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Introduction. The one-dimensional wave equation reads

ϕ̈ = +bD2ϕ

but for a stiff rod one has (for complicated rheological reasons, and after certain
simplifications)

ϕ̈ = −βD4ϕ (1)

Similarly, the diffusion equation reads

ϕ̇ = +aD2ϕ

but in recent work Richard Crandall has encountered algorithmic need of the
biharmonic diffusion equation

ϕ̇ = −αD4ϕ (2)

A question that arises naturally in both cases (and issues from the lips as
a physical question) is “Why the D4?” But the question to which Richard
directed my specific attention is “Why the minus sign?” It turns out that
the two questions are—not at all surprisingly—intertwined: my attempt to
illuminate the latter cast pale light also on the former.

In several dimensions the diffusion equation reads

ϕ̇ = a∇2ϕ

and Richard’s more recent work has led him to ask: “What meaning (especially
in the two-dimensional case) can be assigned to the ‘fractional Laplacian’ ∇p

that enters into the fractional diffusion equation

ϕ̇ = a∇pϕ (3)



2 The fractional Laplacian

On these pages I provide an account of my initial response ( January )
to Richard’s first question, and explore one possible approach to his (relatively
more interesting) second question.

1. The sign problem in one dimension. By definition

Df(x) = e+ 1
2hD − e−

1
2hD

h
f(x)

=
f(x + 1

2h)− f(x− 1
2h)

h

with limh ↓ 0 understood. Similarly

D2f(x) =
[
e+ 1

2hD − e−
1
2hD

h

]2

f(x)

=
f(x + h)− 2f(x) + f(x− h)

h2

= − 2
h2

{
f(x)− 〈f(x)〉

}
(4.1)

〈f(x)〉 ≡ 1
2

[
f(x− h) + f(x + h)

]
and by the same argument

D4f(x) =
[
e+ 1

2hD − e−
1
2hD

h

]4

f(x)

=
f(x + 2h)− 4f(x + h) + 6f(x)− 4f(x− h) + f(x− 2h)

h4

= + 6
h4

{
f(x)− 〈f(x)〉

}
(4.2)

〈f(x)〉 ≡ 1
6

[
− f(x− 2h) + 4f(x− h)

+ 4f(x + h)− f(x + 2h)
]

The point of immediate interest is that the leading sign has flipped, then
flopped, in accordance with the general pattern

D2nf(x) = (−)nh−2n
(
2n
n

){
f(x)− 〈f(x)〉

}
: n = 1, 2, 3, . . . (4.n)

where 〈f(x)〉 becomes progressively more complicated, yet is never really very
complicated; it uses binomial weights to favor nearer neighbors over more
remote neighbors, but does so subject to a principle of sign alternation.

I describe now an alternative approach to the same problem. I find the
following line of argument to be of some intrinsic interest, and will show in §2
that it serves to open some surprising doors. From

f(x) =
∫

δ(y − x)f(y) dy
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it follows that

f ′(x) =
∫

δ(y − x)f ′(y) dy

= −
∫

δ′(y − x)f(y) dy after integrating by parts

f ′′(x) = (−)2
∫

δ′′(y − x)f(y) dy
...

f (n)(x) = (−)n
∫

δ(n)(y − x)f(y) dy (5)

The (−)n factor (which becomes invisible when n is even, and therefore cannot
account for the “sign alternation phenomenon” to which Richard directed my
attention) is a characteristic artifact of iterated integration-by-parts; in §2 we
will find it convenient (and easy) to achieve its elimination.

Adopt (as a matter of analytical convenience) the Gaussian representation1

of the delta function

δ(y − x) = lim
ε↓0

1√
2πε

e−
1
2ε (y−x)2 (6.0)

Then
δ(n)(y − x) = lim

ε↓0
1√
2πε

(
− 1√

ε

)n

Hen

(y − x√
ε

)
e−

1
2ε (y−x)2 (6.n)

where Hen(z) ≡ (−)ne
1
2 z

2( d
dz

)n
e−

1
2 z

2
serves to define the monic Hermite

polynomials

He0(z) = 1
He1(z) = z

He2(z) = z2 − 1
He3(z) = z3 − 3z
He4(z) = z4 − 6z2 + 3
He5(z) = z5 − 10z3 + 15z
He6(z) = z6 − 15z4 − 45z2 − 15

...
Hen+1(z) = yHen(z)− nHen−1(z) (7)

Returning with this information to (5), we have

Dnf(x) = lim
ε↓0

1√
2πε

(
1
ε

)n
2
∫ +∞

−∞
f(y)wn

(y − x√
ε

)
dy (8)

with
wn(z) ≡ e−

1
2 z

2
Hen(z) =

(
− d

dz

)n
e−

1
2 z

2
(9)

1 Other representations (see below) give rise to qualitatively similar results,
but easily lead to nameless functions which lie outside the established canon of
higher analysis.
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Figure 1: Superimposed graphs of w0(z),w2(z) and w4(z). One
can look to (10.2) to figure out which is which

He0(0) = +1
He2(0) = −1
He4(0) = +3

or one can simply count count axis crossings.

We have a lively interest at present only in the even cases n = 2m. Graphs of
the weight functions w0(z),w2(z) and w4(z) are superimposed in Figure 1. It
is an implication of (9) that

w2m(0) = He2m(0) (10.1)

and follows from (7) that Hen+2(0) = −(n+1)Hen(0) which (since He0(0) = 1)
entails

He2m(0) = (−)m 1 · 3 · 5 · · · (2m− 1) (10.2)

The “sign alternation phenomenon” can, according to this result, be attributed
—in Gaussian representation (but only in that context)—to an elementary
property of the Hermite polynomials.

I have in Figure 2 attempted to capture the essence of the process

lim
ε↓0

(
1
ε

)n+1
2
wn

(y − x√
ε

)
Figures 1 and 2 jointly serve to establish the sense in which (8) provides a
continuous analog of (4); the weight function w2m(y−x√

ε ) favors neighborhoods
near to x over neighborhoods more remote, but does so subject to a principle
of sign alternation.



Novel approach to the fractional calculus 5

-4 -2 2 4

-30

-20

-10

10

20

30

40

50

Figure 2: Graphs of the function
(

1
ε

)n+1
2 wn

(
y−0√

ε

)
in the case

n = 4 with ε = 1
2 and ε = 1

3 . The latter is more compact, has
enhanced extremal values, and illustrates the trend associated with
the limiting process ε ↓ 0.

2. A novel approach to the fractional calculus. Though our interest in (8) was
initially specific to cases in which n is even, the formula makes good sense
for all integral values of n. My intention here will be to explore implications
of the observation that it can be assigned a natural meaning even when n is
non-integral .

Citizens well-established within the community of higher functions are the
so-called “parabolic cylinder functions” Dν(x), often called “Weber functions”
and less often a confusing variety of other names. The elaborate theory of such
functions is summarized in all the standard handbooks.2 One has

Dn(z) = e−
1
4 z

2
Hen(z) : n = 0, 1, 2, . . . (11)

giving
wn(z) ≡ e−

1
4 z

2
Dn(z) (12)

Returning with this information to (8), we have

Dnf(x) = lim
ε↓0

1√
2π

(
1
ε

)n+1
2

∫ +∞

−∞
f(y) e−

1
4 [ y−x√

ε
]2
Dn

(
y−x√

ε

)
dy (13)

2 See, for example, Erdélyi et al , Higher Transcendental Functions II ()
Chapter 8; Abramowitz & Stegun, Handbook of Mathematical Functions ()
Chapter 19; Magnus & Oberhettinger, Formulas & Theorems for the Functions
of Mathematical Physics () Chapter 6, §3; Spanier & Oldham, An Atlas of
Functions () Chapter 46.
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The interesting point to which I would draw attention is that Dν(z) is
well-defined for all real values of ν. Does it therefore make sense to write (say)

D
1
2 f(x) = lim

ε↓0
1√
2π

(
1
ε

) 3
4

∫ +∞

−∞
f(y) e−

1
4 [ y−x√

ε
]2
D 1

2

(
y−x√

ε

)
dy ? (14.1)

D−1f(x) = lim
ε↓0

1√
2π

(
1
ε

)0
∫ +∞

−∞
f(y) e−

1
4 [ y−x√

ε
]2
D−1

(
y−x√

ε

)
dy ? (14.2)

...

Is it perhaps possible to recover (some natural variant of) the entire “fractional
calculus”3 from (some natural variant of) (13)?

To test the merit of the idea, we look to (14.2). One has

D−1(z) =
√

π
2 e

+ 1
4 z

2
erfc

(
z√
2

)
with erfc(x) ≡ 2√

π

∫ ∞

x

e−t2dt

giving

D−1f(x) =
∫ +∞

−∞
f(y)

{
lim
ε↓0

1
2erfc

(
y−x√

2ε

)}
dy (15)

and it is to make sense of the expression within brackets that I now digress:

I had occasion recently to draw attention4 to the computational power of
certain techniques made available by the intimacy of the relationship between
the Heaviside step function θ(x− a) and the Dirac spike δ(x− a):

θ(x− a) =
∫ x

−∞
δ(ξ − a) dξ =




0 for x < a
1
2 at x = a
1 for x > a



d
dxθ(x− a) = δ(x− a)

It is widely appreciated that the δ -function admits in principle of infinitely many
representations (in the sense δ(x−a) = limε↓0 δ(x−a; ε)), and that some of these
are actually/indispensably useful; among the representations most frequently
encountered in practical work are

δ(x− a; ε) =




1
2ε if a− ε < x < a + ε, and 0 otherwise; else

1√
2πε

exp
{
− 1

2ε (x− a)2
}
; else

1
πx sin(x/ε); else . . .

3 For an account of this subject, and references to its small literature, see
“Construction & physical application of the fractional calculus” ().

4 “Formal theory of singular functions” ().
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Less widely appreciated is the elementary fact that each such representation
gives rise to an associated “representation of the θ -function,” in the sense

θ(x− a) = lim
ε↓0

θ(x− a; ε) with θ(x− a; ε) ≡
∫ x

−∞
δ(ξ − a; ε) dξ (16)

From the Gaussian representation we are led, for example, to

θ(x− a) = lim
ε↓0

∫ x

−∞
1√
2πε

e−
1
2ε (ξ−a)2dξ

= lim
ε↓0

{ ∫ ∞

−∞
−

∫ ∞

x

}
1√
2πε

e−
1
2ε (ξ−a)2dξ

= lim
ε↓0

{
1− 1√

π

∫ ∞

x−a√
2ε

e−t2dt

}

= lim
ε↓0

{
1− 1

2 erfc
(
x−a√

2ε

)}
which by appeal to the “reflection formula” erfc(−x) = 2−erfc(x) becomes

= lim
ε↓0

1
2 erfc

(
a−x√

2ε

)
(17)

The meaning of this striking result is illustrated in Figure 3. On the right side
of (17) we encounter a particular “parameterized sigmoid family” of functions
θ(x − a; ε). The interesting point—formerly too obvious to mention, but now
brought emphatically to our attention—is that we could start with any such
family and (by simple differention) recover an associated representation of
δ(x− a); in short, the association

representation of δ(x− a) ⇐⇒ representation of θ(x− a)

is a two-way street, most easily traversed in the reverse (⇐) of the standard
direction.

Returning now with (17) to (15), we have

D−1f(x) =
∫ +∞

−∞
f(y)θ(x− y) dy

=
∫ x

−∞
f(y) dy

which is gratifying, since application of D gives

D+1D−1f(x) = f(x)

as required by the Fundamental Theorem of the Calculus.
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Figure 3: Representation of θ(x) as the limit of a sequence of
complementary error functions 1

2 erfc
(a−x√

2ε

)
. In the figure I have

set ε = 2, 1, 1
2 . The sigmoid curve rises ever more abruptly as ε ↓ 0.

Thus encouraged, I step back now to contemplate the broad outlines of
a formally unified theory of differentiation/integration, then step again closer
to the easel to examine the feasibility of using parabolic cylinder functions to
construct an interpolating realization of such a theory. By way of preparation
for the former undertaking—taking motivation from the observation that while
sign alternation is a “characteristic artifact of iterated integration-by-parts”
it is not a characteristic artifact of iterated integration—I show how one can
expunge the (−)n-factor from (5).

If δ(x) is considered to be an even function (limit of a sequence of even
functions) then δ(n)(x) is odd/even according as n is odd/even, from which it
follows that (5) can be rewritten

Dnf(x) =
∫

f(y) δ(n)(x− y) dy (18)

≡ f+×δ(n) : convolution (or “Faltung”), in standard form

We are led thus to the scheme summarized in Table 1, the substance of which
(compare (8)) can be notated

Dnf = f+×Wn with Wn(x) =




δ(2)(x) : n = +2
δ(1)(x) : n = +1

δ(x) : n = 0
θ(x) : n = −1

x1θ(x) : n = −2
1
2! x

2θ(x) : n = −3

(19)
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...

D2f(x) =
∫

δ(2)(x− y)f(y) dy

D1f(x) =
∫

δ(1)(x− y)f(y) dy

D0f(x) =
∫

δ(x− y)f(y) dy = f(x)

D−1f(x) =
∫

θ(x− y1)f(y1) dy1

=
∫ x

f(y) dy =
∫ x

(x− y)0f(y) dy

D−2f(x) =
∫∫

θ(x− y2)θ(y2 − y1)f(y1) dy1dy2

=
∫ x∫ y2

f(y1) dy1dy2 =
∫ x

(x− y)1f(y) dy

D−3f(x) =
∫∫∫

θ(x− y3)θ(y3 − y2)θ(y2 − y1)f(y1) dy1dy2dy3

=
∫ x∫ y3

∫ y2

f(y1) dy1dy2dy3 = 1
2!

∫ x

(x− y)2f(y) dy

...

Table 1: Inverted refinement and extension of the equations which
culminated in (5). The upper/lower implicit limits are ±∞, but
this is forced upon us only because we have (arbitrarily) adopted
a Gaussian representation of the δ-function. The differentiation
operator D, when applied to any entry, yields the entry next higher
in the table, while the integration operator D−1 yields the entry next
lower. The elegant (but elementary) identity

∫ x∫ yn
∫ yn−1

· · ·
∫ y2

f(y1) dy1dy2 · · · dyn = 1
(n−1)!

∫ x

(x− y)n−1f(y) dy

is due to Cauchy.

Of course, functions are only conditionally differentiable/integrable; it is easy
to think up functions which make nonsense of any of the preceding statements.
Sooner or later, one must characterize the class of functions to which purported
formulæ are claimed to pertain. My procedure will be to proceed formally, and
to address the class-characterization problem (if at all) only after the fact. That
understood. . .

It is striking that the theory of integration appears on these representation-
independent formal grounds to be simpler—in the sense that it provides more
obvious means of escape from the “tyranny of the integers”—than the theory
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of differentiation; it becomes natural, in view of the foregoing, to write

D−νf(x) = 1
Γ (ν)

∫ x

(x− y)ν−1f(y) dy

= f+×W−ν with W−ν(x) = 1
Γ (ν) x

ν−1θ(x)


 : ν > 0 (20)

By formal extension

↓
Dνf(x) = f+×Wν with Wν(x) = 1

Γ (−ν) x
−ν−1θ(x) (21)

which (on account of a familiar property of the gamma function) becomes
singular at precisely the ν-values for which the meaning of Dνf(x) should be
least exceptionable. Look, however, to the associated (Gaussian) representation
theory:

We have seen5 it to be an implication of

δ(y − x) = lim
ε↓0

1√
2πε

e−
1
2ε (y−x)2

—i.e., of the representation

W0(x) = lim
ε↓0

1√
2π

(
1
ε

) 1
2 e

− 1
4 [− x√

ε
]2
D0

(
− x√

ε

)
D0

(
− x√

ε

)
= e

− 1
4 [− x√

ε
]2

—that

δ(n)(x− y) = lim
ε↓0

1√
2π

(
1
ε

)n+1
2 e

− 1
2 [ y−x√

ε
]2
Hen

(
y−x√

ε

)
= lim

ε↓0
1√
2π

(
1
ε

)n+1
2 e

− 1
4 [ y−x√

ε
]2
Dn

(
y−x√

ε

)
: n = 0, 1, 2, . . . (22)

which give

Wn(x) = lim
ε↓0

Wn(x; ε)

Wn(x; ε) ≡ lim
ε↓0

1√
2π

(
1
ε

)n+1
2 e

− 1
4 [− x√

ε
]2
Dn

(
− x√

ε

)

 (23)

By formal extension

Dνf(x) =
∫

f(y)Wν(x− y) dy

Wν(x− y) ≡ lim
ε↓0

1√
2π

(
1
ε

) ν+1
2 e

− 1
4 [− y−x√

ε
]2
Dν

(
y−x√

ε

)
︸ ︷︷ ︸


 (24)

Wν(x− y; ε)

5 I take my information from (6.n) and (13).



Novel approach to the fractional calculus 11

One expects it to be an implication of (24)—as, indeed, of its analog in
any representation—that(

d
dx

)n
Dνf(x) =

∫
f(y)Wn+ν(x− y) dy (25)

and is therefore gratified to observe that (25) follows directly from what Spanier
& Oldham (at 46:10:3) call the “elegant relationship”(

− d
dz

)n{
e−

1
4 z

2
Dν(z)

}
= e−

1
4 z

2
Dn+ν(z) : n = 0, 1, 2, . . . (26)

For (26), when brought to (24), gives(
− d

dz

)n
Wν(x; ε) = Wn+ν(x; ε) for all ε, therefore also in the limit ε ↓ 0

One can approach the same issue also from another angle, but before I
consider the instructive details I interpose this important remark: Generally (as
in the elementary theory of δ -functions) one understands

∫
f(y)Wν(x − y) dy

to be by intent an

abbreviated allusion to the process lim
ε↓0

∫
f(y)Wν(x− y; ε) dy (27)

Integrate, then proceed to the limit. But in some favorable cases the sequence
can be reversed, and it makes literal sense to write

∫
f(y)Wν(x − y) dy. That

understood. . .we expect to be able to extract a statement of the form∫ { ∫
f(y)Wν(z − y; ε1) dy

}
Wn(x− z; ε2) dz =

∫
f(y)Wn+ν(x− y; ε) dy

or again ∫
Wn(x− z; ε1)Wν(z − y; ε2) dz = Wn+ν(x− y; ε)

from the theory of D -functions, but the following calculation shows that the
preceding equation makes literal good sense even in the limit in an identifiable
class of cases. Working from (21), we have∫

Wµ(x− z)Wν(z − y) dz

= 1
Γ (−µ)Γ (−ν)

∫
(x− z)−µ−1(z − y)−ν−1θ(x− z)θ(z − y) dz

= 1
Γ (−µ)Γ (−ν)

∫ x

y

(x− z)−µ−1(z − y)−ν−1 dz

for which Mathematica reports the pretty result

= 1
Γ (−µ−ν) (x− y)−µ−ν−1θ(x− y) (28)

subject only to the requirement that �(µ) < 0 and �(ν) < 0. It is, in particular,
not required that either µ or ν be the negative of an integer. The implication is
that (21) gives rise to a theory of fractional integration in which the anticipated
iteration law D−µD−ν = D−(µ+ν) is satisfied (here µ and ν are taken to be
positive, and the minus signs emphasize that we refer to iterated integration).
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So we are brought again to the perception that “it is easier to fractionally
integrate than to fractionally differentiate,” and that the latter operation is
most naturally given meaning by one or the other (which? does it make a
difference? 6) of the schemes

fractional derivative =
{

ordinary derivative of fractional integral, else
fractional integral of ordinary derivative

Thus the “semiderivative:”

D
1
2 f(x) =


D

{
D− 1

2 f(x)
}

= D
{

1
Γ ( 1

2 )

∫ x(x− y)−
1
2 f(y) dy

}
, else

D− 1
2

{
Df(x)

}
=

{
1

Γ ( 1
2 )

∫ x(x− y)−
1
2 f ′(y) dy

}
That we confront real options, and have acquired an obligation to recognize
some delicate distinctions, becomes clear when we look to simple examples.
Suppose f(x) = x0: then

D
1
2x0 =




D
{

1√
π

∫ x

a
1√
x−y

dy = 2
√
x−a√
π

}
= 1√

π(x−a)
, but

D− 1
2

{
0

}
= 0

which could not be more different; note also that the former expression becomes
meaningless when we set a = −∞, but at a = 0 reproduces a statement
first obtained by Lacroix () by the simplest of formal means. In the next
simplest case f(x) = x1 we obtain

D
1
2x =




D
{

1√
π

∫ x

a
y√
x−y

dy = 2
√
x−a(2x+a)

3
√
π

}
= 2x−a√

π(x−a)
, but

D− 1
2

{
1

}
= 2

√
x−a√
π

which are again meaningless at a = −∞ and distinct for most values of a, but
become coincident at a = 0, where they reproduce Lacroix’ D

1
2x = 2

√
x
π .

How can it be that D ·D− 1
2 and D− 1

2 ·D yield different results? An answer
to that question is provided in §1 of an essay already cited.3 Quite generally,

(differentiation) · (differentiation) = Dlaw of exponents

(differentiation) · (integration) = Dlaw of exponents

(integration) · (integration) = Dlaw of exponents

but

(integration) · (differentiation) = Dlaw of exponents + extra terms

6 See immediately below.
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It is for this reason that the fractional calculus is standardly considered to rest
upon the principle

(differentiation) · (fractional integration) = Dlaw of exponents (29)

That principle can be detected in the design of (25), which I am now motivated
to write in the more emphatic form

(
d
dx

)n
D−νf(x) =

∫
f(y)Wn−ν(x− y) dy : ν > 0 (30)

The phrase “fractional integration” is susceptible, as we have just noticed,
to an infinite range of interpretations, depending upon the value assigned to
the “fiducial point” a in the formula

D−νf(x) = 1
Γ (ν)

∫ x

a

(x− y)ν−1f(y) dy

There is much to recommend the common practice of setting a = 0; then

D−νf(x) = 1
Γ (ν)

∫ x

0

(x− y)ν−1f(y) dy

≡ “Riemann-Liouville transform” of f(x)

= 1
Γ (ν)

∫ +∞

−∞
f(y)

{
1

Γ (ν) (x− y)ν−1θ
(
y(x− y)

)}
dy

where g(y) ≡ y(x − y) is, by design, positive only on the interval 0 < y < x.7

But we have (at (20)) been led by our interest in Gaussian representation theory
to set a = −∞, giving

D−νf(x) = 1
Γ (ν)

∫ x

−∞
(x− y)ν−1f(y) dy

≡ “Liouville transform” of f(x)

= 1
Γ (ν)

∫ +∞

−∞
f(y)

{
1

Γ (ν) (x− y)ν−1θ(x− y)
}
dy (31)

My examples serve to demonstrate that functions which are Riemann-Liouville
transformable may not be Liouville transformable; the extent of the class of
fractionally integrable functions is contingent upon specification of the fiducial
point. In principle one has ∫ x

−∞
−

∫ a

−∞
=

∫ x

a

but this is of limited help in practice: it is not usually satisfactory to write{
finite +∞

}
−

{
∞

}
=

{
finite

}
7 Note that the integral is not quite of convolutory form.
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Liouville’s equation (31) was acquired (as were its cousins) by fractional
generalization of (19), and recently I have, in that historical tradition, proceeded
as though the distributions Wν(x) were known. Now I ask whether (31) can be
acquired from (24); i.e., from the generalized Gaussian representation theory I
have elsewhere been at such pains to construct. Can one show that if

Wν(x; ε) ≡ 1√
2π

(
1
ε

) ν+1
2 e

− 1
4 [− x√

ε
]2
Dν

(
− x√

ε

)
then

Wν(x) ≡ lim
ε↓0

Wν(x; ε) = distributions reported at (19)?

This we have accomplished thus far only in the cases ν ∈
{
−1, 0, 1, 2, . . .

}
. For

reasons implicit in (29), I look here only to the fractional integral aspects of the
problem (and for emphasis adjust my ν-sign convention). I want to show that
if

W−ν(x; ε) ≡ 1√
2π

(
1
ε

) 1−ν
2 e

− 1
4 [− x√

ε
]2
D−ν

(
− x√

ε

)
: ν > 0 (32)

then W−ν(x) ≡ limε↓0 W−ν(x; ε) = 1
Γ (ν) x

ν−1 θ(x). At (15) I was able in the
case ν = 1 to extract a proof from the leading member of the series of integral
representations supplied by Spanier & Oldham (46:4:4 and 40:13:1/2/3):

D−1−n(x) = 2
n+1

2 e
1
4x

2
∫ ∞

x

1
n!

(
t− x√

2

)n
e−t2 dt : n = 0, 1, 2, . . .

Returning with this more elaborate information to (32), we have

W−ν(x; ε) = 1√
π
(2ε)

ν−1
2

∫ ∞

− x√
2ε

1
(ν−1)!

(
t + x√

2ε

)ν−1
e−t2 dt (33)

at least when ν is an integer: ν = 1, 2, . . . At ν = 1 Mathematica returns

W−1(x; ε) = 1
2

[
1− erf

(
− x√

2ε

)]
= 1

2erfc
(
− x√

2ε

)
↓
= θ(x) as ε ↓ 0

while at ν = 2 and ν = 3 Mathematica gives

W−2(x; ε) = 1
2x

[
1− erf

(
− x√

2ε

)]
+
√

2ε e−[ x√
2ε

]2

↓
= xθ(x)

W−3(x; ε) = 1
4

(
x2 + ε

)[
1− erf

(
− x√

2ε

)]
+ 1

4
√
π
x
√

2ε e−[ x√
2ε

]2

↓
= 1

2!x
2θ(x)

These results are encouraging, but make clear that more powerful methods
would be required to establish the general result; since my present effort is only
exploratory, I will decline the invitation—posed by (32)—to invest major time
snooping through the handbooks in quest of servicable identities, and instead
look to few more accessible details. After all, it is from imagery provided by
the process (27)—therefore from the functions Wν(x − y; ε) rather than from
their singular limits—that representation theory acquires much of its interest.
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It is to bring attention to a puzzle implicit in some of the preceding material
that I look now again to the semiderivative:

D
1
2 f(x) ≡ D

∫ x

a

f(y) · 1√
π

1√
x−y

dy (34)

In a couple of illustrative cases we have integrated-then-differentiated, and
enjoyed seeming success; it is by that procedure that (for future reference)
I have generated the following short table:

D
1
2x0 = 1√

π(x−a)
(35.0)

D
1
2x1 = 1√

π(x−a)

{
2x− a

}
(35.1)

D
1
2x2 = 1

3
√

π(x−a)

{
8x2 − 4ax− a2

}
(35.2)

D
1
2x3 = 1

5
√

π(x−a)

{
16x3 − 8ax2 − 2a2x− a3

}
(35.3)

D
1
2x4 = 1

35
√

π(x−a)

{
128x4 − 64ax3 − 16a2x2 − 8s3x− 5a4

}
(35.4)

D
1
2x5 = 1

63
√

π(x−a)

{
256x2 − 128ax4 − 32a2x3 − 16a3x2 − 10a4x− 7a5

}
...

D
1
2xp = Γ (p+1)

Γ (p+1− 1
2 )
xp−

1
2 (35.p)

+ ap+1

x

{
1√

π(x−a)
− 1+2p

2(1+p)
1√
πx 2F1[

1
2 , 1 + p, p + 2, ax ]

}
The expressions on the right blow up as a ↓ −∞ (Liouville transform), but
conform to Lacroix’ formula

Dmxp = Γ (p+1)
Γ (p+1−m)x

p−m

at a = 0 (Riemann-Liouville transform).

Looking back again to (34), I ask: Can one do the differentiation first,
prior to actual specification of f(•)? The prospect of success might appear to
be dim, since the right side of

d
dx

∫ x

a

f(y) · 1√
π

1√
x−y

dy = f(y) · 1√
π

1√
x−y

∣∣∣
y→x
−

∫ x

a

f(y) · 1
2
√
π

1
(x−y)3/2 dy

is singular nonsense on its face, and makes only precarious good sense when
examined more closely: look again to the examples of the form f(x) = xp; we
have

d
dx

∫ x

a

y0 · 1√
π

1√
x−y

dy = 1√
π(x−y)

∣∣∣∣y↑x − 1√
π(x−y)

∣∣∣∣y↑x
y↓a

= 1√
π(x−a)

+ lim
y↑x

{
1−1√
π(x−y)

}
(36.0)
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d
dx

∫ x

a

y1 · 1√
π

1√
x−y

dy = y√
π(x−y)

∣∣∣∣y↑x − 2x−y√
π(x−y)

∣∣∣∣y↑x
y↓a

= 2x−a√
π(x−a)

− lim
y↑x

{
2x−2y√
π(x−y)

}
(36.1)

d
dx

∫ x

a

y2 · 1√
π

1√
x−y

dy = y2√
π(x−y)

∣∣∣∣y↑x − 8x2−4xy−y2

3
√

π(x−y)

∣∣∣∣y↑x
y↓a

= 8x2−4ax−a2

3
√

π(x−a)
− lim

y↑x

{
8x2−4xy−4y2

3
√

π(x−y)

}
(36.2)

...

The expressions lim
{
etc.

}
come to us in the form

{
∞−∞

}
, but can be assigned

unambiguous values by rearrangement: at (36.0) we encounter limy↑x
{

0√
x−y

}
,

which clearly vanishes. At (36.1) we encounter limy↑x
{√

x− y
}

and at (36.2)
limy↑x

{
(2x+ y)

√
x− y

}
, both of which also vanish. So the results to which we

are led are in fact finite, and in agreement with (35).

The element of delicacy can be removed from the preceding line of argument
by a simple regularization procedure8 Write

d
dx

∫ x

a

f(y) · 1√
π

1√
x−y

dy = lim
ε↓0

d
dx

∫ x

a

f(y) · 1√
π

1√
x+ε−y

dy

= lim
ε↓0

{
f(x) · 1√

π
1√
ε
−

∫ x

a

f(y) · 1
2
√
π

1
(x+ε−y)3/2 dy

}
(37)

which Mathematica finds quite palatable; for example, at f(x) = x2 we are told
that

D
1
2x2 = lim

ε↓0

{
x2
√
πε
− 3x2+12εx+8ε2

3
√
πε

+ 8(x+ε)2−4a(x+ε)−a2

3
√

π(x+ε−a)

}
= 1

3
√

π(x−a)

{
8x2 − 4ax− a2

}
in precise agreement with (35.2). In the general case Mathematica gives

D
1
2xp = lim

ε↓0

{
xp
√
πε
− x1+p( ε

x+ε )3/2
2F1[1+p, 32 ,2+p, x

x+ε ]

2(1+p)
√
πε3/2

+
a1+p( x+ε−a

x+ε )3/2
2F1[1+p, 32 ,2+p, a

x+ε ]

2(1+p)
√
π(x+ε−a)3/2

}
but warns that it has been “unable to check for convergence;” it does not give
back (35.p) in the limit, but when p is set equal to an integer does (after a vast
amount of simplification) eventually reproduce (35.1/2/3/4/5/· · ·).

8 The idea here is a variant of that used standardly to assign value to the
“principal part” (when it exists) of an integral with a singular integrand.
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It is as a first step back toward representation theory that I undertake now
to re-orchestrate the preceeding material. Write

d
dx

∫ x

a

f(y) · 1√
π

1√
x−y

dy = d
dx

∫ +∞

−∞
f(y) · 1√

π
1√
x−y

θ
(
(y − a)(x− y)

)
dy

=
∫

f(y) · ∂
∂x

{
1√
π

1√
x−y

θ
(
(y − a)(x− y)

)}
dy

where g(y; a, x) ≡ (y−a)(x−y) describes a down-turned parabola which crosses
the axis at obvious points, and is positive only if a < y < x. Evidently

D
1
2 f(x) =

∫
f(y)

{[
− 1

2
√
π(x−y)3/2 + 1√

π
1√
x−y

∂
∂x

]
θ
(
(y − a)(x− y)

)}
dy

which is just a fancy way of saying some things already said; from

θ
(
(y − a)(x− y)

)
= θ(y − a)− θ(y − x)

⇓
∂
∂xθ

(
(y − a)(x− y)

)
= δ(y − x)

we obtain

D
1
2 f(x) =

∫
f(y)

{
1√
π

1√
x−y

δ(y − x)− 1
2
√
π(x−y)3/2 θ

(
(y − a)(x− y)

)}
which is simply a disguised rewrite of the equation that led to (36). And
susceptible to the same fragility of meaning. Which we render more robust by
the same mechanism, writing

D
1
2 f(x) = lim

ε↓0

∫
f(y) ∂

∂x

{
1√
π

1√
x+ε−y

θ
(
(y − a)(x− y)

)}
dy (38)

Which—and this is the point—serves to clarify the delicate meaning of the
statement

D
1
2 f(x) =

∫
f(y)W 1

2
(y; a, x) dy (39)

and to place semidifferentiation more nearly on the same formal footing as
semiintegration than was accomplished by (30).

Pretty clearly, the calculus sketched above is in no essential respect special
to semidifferentiation, but can be used to lend sharpened meaning to the notion
of a fractional derivative of any positive order. Look, for example, to the case
ν = 8

5 : the procedure would be to write

D
8
5 f(x) = D2D− 2

5 f(x)

=
(
d
dx

)2
∫ x

a

f(y) 1
Γ ( 2

5 )
(x− y)

2
5−1 dy

= lim
ε↓0

∫
f(y) ·

(
∂
∂x

)2
{

1
Γ ( 2

5 )
1

(x+ε−y)3/5 θ
(
(y − a)(x− y)

)}
dy

. . . and so it goes in general. We recover (20) as a ↓ −∞.
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Go to that limit, where we have waiting for us the rich resources of a
“Gaussian representation theory.”9 We expect that theory to be (when ε �= 0)
“function-theoretically nice,” and to spontaneously supply means for dealing
with the fussy points discussed above. But our faithful guinea pigs xp abandon
us in the limit a ↓ −∞ (xp remains integrally differentiable but not fractionally,
because non-integrable); their place, for the purposes of this discussion, will be
assigned to the functions f(x) = (ex)p = epx. Trivially

Dnepx = pnepx : n = 0, 1, 2, . . . (40)

while (20) entails

D−νepx = 1
Γ (ν)

∫ x

−∞
(x− y)ν−1epy dy = p−νepx

giving
Dn−νepx = pn−νepx (41)

which serves in the simplest imaginable way to provide a natural “fractional
generalization” of (39).10

I pause to confirm that our regularization procedure still works, even in
this slightly modified setting. Proceeding in mimicry of (37), we have

D
1
2 epx = d

dx

∫ x

−∞
epy · 1√

π
1√
x−y

dy = lim
ε↓0

d
dx

∫ x

−∞
epy · 1√

π
1√

x+ε−y
dy

= lim
ε↓0

{
epx · 1√

π
1√
ε
−

∫ x

−∞
epy · 1

2
√
π

1
(x+ε−y)3/2 dy

}
= lim

ε↓0

√
p ep(x+ε)

{
1− erf(

√
pε )

}
=
√
p epx

—in precise agreement with (41).

9 Representation theory appropriate to arbitrary a values (most particularly
to the case a = 0) requires special discussion, and will be taken up on another
occasion.

10 It is perhaps well, in view of the striking simplicity of these equations, to
notice that more complicated formulæ would have been obtained had we set
a = 0: (40) is preserved unchanged, but

D−νepx = p −νepx
{

1− Γ (ν,px)
Γ (ν)

}
D1D−νepx = p1−νepx

{
1− Γ (ν,px)

Γ (ν)

}
+ p1−ν(px)−1+ν 1

Γ (ν)

...

where the incomplete gamma function Γ (ν, z) ≡
∫ ∞
z

tν−1e−t dt gives back the
Euler gamma function Γ (ν) at z = 0.
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We have acquired interest (see again (14)) in the following generalization
of (13):

Dνepx = lim
ε↓0

1√
2π

(
1
ε

) ν+1
2

∫ +∞

−∞
epy e

− 1
4 [ y−x√

ε
]2
Dν

(
y−x√

ε

)
dy

Erdélyi (in his §8.3) lists no fewer than ten integral representations of the
functions Dν(z), of which Spanier & Oldham (at 46:3:1 & 2) quote two; by
slight adjustment of those two, we have

e−
1
4 z

2
Dν(z) =




√
2
π

∫ ∞

0

tνe−
1
2 t

2
cos

(
zt− ν π

2

)
dt : ν > −1

1
Γ (−ν)

e−
1
2 z

2
∫ ∞

0

1
tν+1 exp

(
− 1

2 t
2 − z t

)
dt : ν < 0

Returning with this information to (the following expanded version of) the
definition (32)

Wν(z; ε) ≡ 1√
2π

(
1
ε

) ν+1
2 e−

1
4 (z/

√
ε)2Dν(−z/

√
ε)

and asking Mathematica to perform the integrals, we obtain

Wν(z; ε) =




1
π2

ν−1
2

(
1
ε

) ν+1
2

[
cos νπ

2 Γ (ν+1
2 )M(ν+1

2 ; 1
2 ;− z2

2ε )

−
√

2 z√
ε
sin νπ

2 Γ (ν+2
2 )M(ν+2

2 ; 3
2 ;− z2

2ε )
]

: ν > −1

2
ν−1
2

(
1
ε

) ν+1
2 e−

1
2 (z/

√
ε)2

[
1

Γ ( 1−ν
2 )

M(−ν
2 ; 1

2 ; + z2

2ε )

+
√

2 z√
ε

1
Γ (− ν

2 )
M( 1−ν

2 ; 3
2 ; + z2

2 )
]

: ν < 0

(42)

where the “confluent hypergeometric function” (or “Kummer function”) can be
defined

M(a; b; z) ≡ 1F1(a; b; z) = 1 + az
b + a(1+a)z2

2b(1+b) + a(1+a)(2+a)z3

6b(1+b)(2+b) + · · ·

I shall—with meaning made clear by the right side of (42)—find it convenient to
distinguish the “positive branch” from the “negative branch” of Wν(•, •). The
claim has been made by Mathematica (from whom I have borrowed all ensuing
details) that the two branches actually overlap on the interval −1 < ν < 0; I will
not attempt to prove the implied identity, but submit Figure 4 in evidence of
the truth of the point at issue. We are gratified (but not surprised) to discover
that the complicated expressions on the right side of (42) simplify greatly when
ν = . . . ,+2,+1, 0,−1,−2, . . . :
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Figure 4: Graphs of W− 1
4
(z, 1), W− 2

4
(z, 1) and W− 3

4
(z, 1) computed

from the positive (top) and negative (bottom) branches of (42). The
former function is the most nearly Gauss-like, the latter the most
nearly Heaviside-like. From the evident identity of the figures we
infer that on the region of overlap (−1 < ν < 0) the functions
associated with the two branches are linked by some obscure identity,
but I am not motivated to undertake analytical exploration of the
issue.

W+2(z; ε) = − 1√
2πε

e−z2/2ε 1
ε

[
1− z2

ε

]
W+1(z; ε) = − 1√

2πε
e−z2/2ε

[
z
ε

]
W+0(z; ε) = + 1√

2πε
e−z2/2ε

W−1(z; ε) = 1
2

[
1 + erf

(
z√
2ε

)]
W−2(z; ε) = 1

2z
[
1 + erf

(
z√
2ε

)]
+

√
ε

2π e
−z2/2ε



Novel approach to the fractional calculus 21

Working from

Dνf(x) = lim
ε↓0

∫ +∞

−∞
F (y)Wν(x− y; ε) dy (43)

with the aid of (42), Mathematica computes

D0epx = lim
ε↓0

∫ +∞

−∞
epy W0(x− y; ε) dy

= lim
ε↓0

{
epx+ 1

2p
2ε

}
= epx

D1epx = lim
ε↓0

∫ +∞

−∞
epy W1(x− y; ε) dy

= lim
ε↓0

{
horrendously complicated expression

}
= lim

ε↓0

{
pepx+ 1

2p
2ε when asked to Simplify[%]

}
= pepx

D−1epx = lim
ε↓0

∫ +∞

−∞
epy W−1(x− y; ε) dy

= lim
ε↓0

∫ +∞

−∞
epy 1

2

[
1 + erf

(
x−y√

2ε

)]
dy

=
∫ +∞

−∞
epyθ(x− y) dy : known to us, but not to Mathematica

=
∫ x

−∞
epy dy

= 1
pe

px

But (to pick only the most familiar from an infinitude of potential examples)
the semiderivative D

1
2 epx = lim

∫
epyW1

2
(x − y; ε) dy appears to lie beyond

Mathematica’s capability, even though the anticipated result (
√
pepx) is very

simple.

So the method latent in (42/43) is computationally almost useless: it
struggles—and I do mean struggles!—to achieve the evaluation even of d

dxe
px.

But it has much to recommend it from some other points of view. It achieves its
results-in-principle without recourse to a regularization procedure (is “already
regularized”). Moreover, it places (fractional) differentiation and integration
on the same formal footing , and thus obviates the asymmetry of the standard
procedure (29). Finally, it yields (see Figures 5–9) a clear—and intuitively
very satisfying—diagramatic interpretation of the “interpolative deformation”
process by which the ordinary calculus gives rise to the fractional calculus.11

11 It should, however, be emphasized that precise imagery is specific to the
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Figure 5: Morphing W−1(z; ε) into W0(z; ε): graphs of the weight
functions Wν(z; ε) with ν = − 14

10 (at top),− 12
10 ,−1,− 8

10 , . . . ,− 2
10 , 0

(bottom) and ε set equal to unity. In the limit ε ↓ 0 the Gaussian
W0(z; ε) sharpens to become δ(z), while W−1(z; ε) (note its flat top)
steepens to become θ(z). Semiintegration is achieved by W− 1

2
(z; ε).
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Figure 6: Morphing W0(z; ε) into W+1(z; ε): graphs of the weight
functions Wν(z; ε) with ν = 0 (even, with highest max), 2

10 , . . . ,
8
10 , 1

(odd, with lowest min) and ε set equal to unity. Semidifferentiation
is achieved by W1

2
(z; ε).

[continued from the preceding page ] representation: I work in Gaussian representation;
other representations (of which there are infinitely many) would lead to variants
of the same basic conception.
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Figure 7: Morphing W1(z; ε) into W2(z; ε): graphs of the weight
functions Wν(z; ε) with ν = 1 (odd, with highest max), 12

10 , . . . ,
18
10 , 2

(even, with lowest min) and ε set equal to unity. Note that the
vertical scale changes from figure to figure.
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Figure 8: Morphing W2(z; ε) into W3(z; ε): graphs of the weight
functions Wν(z; ε) with ν = 2 (even), 22

10 , . . . ,
28
10 , 3 (odd, with lowest

min and highest max) and ε set equal to unity.
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Figure 9: Morphing W3(z; ε) into W4(z; ε): graphs of the weight
functions Wν(z; ε) with ν = 3 (odd), 32

10 , . . . ,
38
10 , 4 (even, with lowest

min and highest max) and ε set equal to unity. Notice that the
central extremum is
• maximal in Figure 6 (achieved by W0),
• minimal in Figure 7 (achieved by W2),
• maximal in Figure 9 (achieved by W4);

we have encountered here a manifestation of the “sign alternation”
phenomenon which engaged our attention in §1.

So everything remains, from a function-theoretic point of view, as smooth
and nice as it can be, so long as ε is greater than zero. But—and we come now
to the point of this entire discussion—at ε = 0 we achieve

Wν(z; 0) =
{

(singular stuff at origin) if ν = 0, 1, 2, . . .
(singular stuff at origin) + (modulated step function) otherwise

with the consequence that

Dν
{ is a local operator if ν = 0, 1, 2, . . .

is non-local for all other real values of ν
The story is told in Figure 10 and its caption.

The preceding material fell unbidden into my lap, and its exploration has
taken me away from my main subject matter, so—though it is easy to think
of topics yet unaddressed, of further elaborations—I draw this discussion to
an arbitrary close. The “representation-theoretic approach to the factional
calculus” springs from such a simple/natural idea that I find it difficult to
suppose that it has not already been developed somewhere, by somebody, but
my limited familarity with the sparce literture permits me to cite no reference of
direct relevance. I would be interested to know whether the preceding material
is, in particular, “well-known” to Spanier & Oldham: their Atlas of Functions
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Figure 10: Superimposed graphs of W1
2
(z; ε) as ε descends through

the values 1, 1
2 ,

1
4 ,

1
8 ,

1
16 , . . . A δ-function is assembling itself at the

origin, but it is evident from the figure that

lim
ε↓0

W1
2
(z; ε) =

{
0 : z < 0
negative-valued function of z : z > 0

This conforms to the upshot of equations developed just prior to (38)
in the text, from which we learn that the “negative-valued function of
z” can be described − 1

2
√
πz3/2 . The figure illustrates how it happens

that
Dν

{ is a local operator if ν = 0, 1, 2, . . .
is non-local for all other real values of ν

(which has served me as a primary resource) remains the only handbook in
which attention is given routinely to the fractional integral/derivative properties
of the functions treated. And concerning the fractional calculus itself, they
literally “wrote the book.” Yet in Chapter 8 of their Atlas—which is given over
(remarkably!) to discussion of the step function θ(x−a)—one finds only passing
allusion (8:9) to an associated representation theory, and only oblique reference
(end of 8:10) to the role played by θ(x−a) within the fractional calculus. Their
Chapter 10 treats the delta function δ(x−a), which (see 10:3) they reasonably
consider to be defined by its representation theory, and in 10:12 one encounters
the remark that

“By using the concept of differintegration it is possible to
define a continuum of functions of which the unit-step
function and the Dirac delta function are respectively the
ν = 0 and ν = 1 instances. The general definition is

dν

[d(x +∞)]ν
θ(x− a)
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which evaluates to

θ(x− a)
(x− a)−ν

Γ (1− ν)
: ν �= 1, 2, 3, . . .

except when ν is a positive integer. The ν = 2 case, symbolized
δ′(x− a), may be regarded as the limit

δ′(x− a) = lim
h→0

δ
(
x− a− h

2

)
− δ

(
x− a + h

2

)
h

and is named the unit-moment function. It satisfies the
integral identity∫ +∞

−∞
δ′(t− a)f(t) dt = −f ′(a)

But that’s as far as they take it. I cannot determine whether Spanier & Oldham
—who held all the pieces in their hands—considered the subject too obvious to
write out (or perhaps too tediously unimportant), or simply neglected to seize
the opportunity.

3. General remarks concerning Laplace’s operator. My objective here is to
describe the theory of ∇2 in such a way as to open doors to generalization,
both with regard to dimension and to differential order .

In one dimension the Laplacian is just the second derivative

∇2 means ∂2
x in E1

and generalization with respect to differential order

∇2 −→ ∇2µ

can be accomplished by methods standard to the fractional calculus. But it
is dimensional generalization which serves in the first instance to make things
more interesting.

Working initially in E3: To declare an interest in differentiation
procedures which respect the realities of transformation theory is, by the simplest
interpretation, to declare an interest in the life and times of ∇∇∇. Let ϕ(xxx) be
a scalar field. Then ∇∇∇ϕ transforms as a vector field, and ∇∇∇···∇∇∇ϕ is again a
scalar field. We arrive thus already at the Laplacian—the simplest differential
operator

∇2 = div·grad = ( ∂1 ∂2 ∂3 )


 ∂1

∂2

∂3


 = ∂2

1 + ∂2
2 + ∂2

3

with the property that it sends

scalar field −→ derived scalar field (44)
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∇2 is (as the notation was designed to emphasize) a differential operator of 2nd

order. Operators of 4th,6th, . . . order which also achieve (44) can be obtained
by iteration:

∇2m ≡ (div·grad)m = (∂2
1 + ∂2

2 + ∂2
3)m

= (∂2m
1 + ∂2m

2 + ∂2m
3 ) + cross terms

For an occurrence of the so-called “biharmonic equation”

∇4ϕ = 0

(in connection with the theory of elastic media) see Morse & Feshbach.12

Preceeding remarks extend straightforwardly from E3 to EN .

Looking now to operators which achieve

vector field −→ derived vector field (45)

we in 1st order have at our disposal only

curl = ∇∇∇× =


 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0




but in 2nd order encounter a pair of such operators:

curl curl =


 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0


2

=


 ∂1∂1 ∂1∂2 ∂1∂3

∂2∂1 ∂2∂2 ∂2∂3

∂3∂1 ∂3∂2 ∂3∂3


−


∇2 0 0

0 ∇2 0
0 0 ∇2




and

grad div =


 ∂1

∂2

∂3


 ( ∂1 ∂2 ∂3 )

=


 ∂1∂1 ∂1∂2 ∂1∂3

∂2∂1 ∂2∂2 ∂2∂3

∂3∂1 ∂3∂2 ∂3∂3




The operator

grad div− curl curl =


∇2 0 0

0 ∇2 0
0 0 ∇2


 (46)

12 Methods of Theoretical Physics (), p. 1786.
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is, for obvious reasons, often called the “vector Laplacian.” That

(grad div− curl curl)m =


∇2 0 0

0 ∇2 0
0 0 ∇2


m

=


∇2m 0 0

0 ∇2m 0
0 0 ∇2m


 (47)

is obvious if one works from the expression on the right, but less obvious if one
works from the expression on the left; in the case m = 2 we have

(grad div− curl curl)2 = grad div grad div + curl curl curl curl

−
{
grad div curl curl + curl curl grad div

}
where the cross terms

{
etc.

}
vanish because

div curl = curl grad = 0 (48)

i.e., because ∂i∂j = ∂j∂i entails

( ∂1 ∂2 ∂3 )


 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0




︸ ︷︷ ︸
=


 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0





 ∂1

∂2

∂3




︸ ︷︷ ︸
= O

operates on vector fields operates on scalar fields

In the general case one has (since (48) serves generally to kill all cross terms)

(grad div− curl curl)m = (grad div)m + (−)m(curl curl)m (49)

Extension of the preceeding remarks from E3 to EN is possible but—to the
extent “curl” has been involved—not straightforward. Nor can one (unless
familiar with the theory of dyadics) proceed straightforwardly to the formation
of differential operators which achieve

tensor field −→ derived tensor field (50)

The high road to the simultaneous solution of both problems is provided by
the exterior calculus, which I have described in fairly elaborate detail (both in
general, and as it relates to the matters at hand) elsewhere.13 The progression
(44) → (45) → (50) → · · · is achieved by rank generalization, which serves
usefully to place individual results in context, but will be of no further interest
to me here; in service of expository simplicity I restrict my remarks to ∇2-like
operators which act upon scalar fields.

13 “Electrodynamnical applications of the exterior calculus” (), §§2 & 3.
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I have concentrated thus far the upon the transformational/algebraic basis
of the claim that ∇2 is a “natural object.” Rather more convincing is the
argument which proceeds by dimensional generalization of the argument which
gave (4.1), and which in the case N = 2 reads

∇2f(x, y) =
f(x + h, y)− 2f(x, y) + f(x− h, y)

h2

+
f(x, y + h)− 2f(x, y) + f(x, y − h)

h2

= − 4
h2

{
f(x)− 〈f(x)〉

}
(51.1)

with

〈f(x)〉 ≡ 1
4

[
f(x + h, y) + f(x− h, y) + f(x, y + h) + f(x, y − h)

]
≡ 1

4

[
f1,0 + f−1,0 + f0,1 + f0,−1

]
= average over nearest-neighbor lattice points

By the same argument14 we are led to

∇4f(x, y) =
{
∂4
x + 2∂2

x∂
2
y + ∂4

y

}
f

= 1
h4

{
20f0,0 − 8

[
f1,0 + f0,1 + f−1,0 + f0,−1

]
+ 2

[
f1,1 + f−1,1 + f−1,−1 + f1,−1

]
+

[
f2,0 + f0,2 + f−2,0 + f0,−2

]}
= + 20

h4

{
f(x)− 〈f(x)〉

}
(51.2)

〈f(x)〉 ≡ + 8
20

[
f1,0 + f0,1 + f−1,0 + f0,−1

]
− 2

20

[
f1,1 + f−1,1 + f−1,−1 + f1,−1

]
− 1

20

[
f2,0 + f0,2 + f−2,0 + f0,−2

]
∇6f = − 112

h6

{
f(x)− 〈f(x)〉

}
(51.3)

where in the final equation

〈f(x)〉 ≡ + 57
112

[
f1,0 + f0,1 + f−1,0 + f0,−1

]
− 24

112

[
f1,1 + f−1,1 + f−1,−1 + f1,−1

]
− 12

112

[
f2,0 + f0,2 + f−2,0 + f0,−2

]
+ 3

112

[
f2,1 + f1,2 + f−1,2 + f−2,1 + f−2,−1 + f−1,−2 + f1,−2 + f2,−1

]
+ 1

112

[
f3,0 + f0,3 + f−3,0 + f0,−3

]
14 I define

Lap[m] :=

([
e+ 1

2hX − e−
1
2hX

h

]2

+
[
e+ 1

2hY − e−
1
2hY

h

]2
)m

and ask Mathematica to Expand[Lap[2]], etc. I am borrowing my subscripted
notation from Abramowitz & Stegun’s §25.3.
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That we can continue even in higher order to embrace the notion that

〈f(x)〉 = signed proximity-weighted average over a near neighborhood

is supported by the following observations:

8
20 × 4− 2

20 × 4− 1
20 × 4 = 1

57
112 × 4− 24

112 × 4− 12
112 × 4 + 3

112 × 8 + 1
112 × 4 = 1

The specific neighborhoods in question are shown in the following diagrams:

Harmonic neighborhood of the central point.

Biharmonic neighborhood.

Triharmonic neighborhood.
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Dimensional generalization of the “lattice argument” is straightforward,15

and the method does bring naturally into play the notion of “proximity-weighted
neighborhood.” The method is, however, susceptible to the criticism that it
assigns importance only to a discrete subset of the continuum of points which
stand in given proximity to any given point; it introduces a “graininess” into
the analysis of a subject which is itself devoid of intrinsic graininess. Removal of
that formal defect stands as a precondition to arrival at my intended objective,
and will be accomplished by extension of the “spherical averaging technique”
which I have employed on a couple of previous occasions.16

Looking first to the case N = 2: to describe the values assumed by f(x, y)
in the neighborhood of some generic point, center a polar coordinate system
upon that point and (by multivariate Taylor expansion) write

f(x + r cosφ, y + r sinφ) = er cosφ ∂
∂x +r sinφ ∂

∂y f(x, y)

=
∑

1
n!r

n(cosφ ∂
∂x + sinφ ∂

∂y )nf(x, y)

Let 〈f(x, y; r)〉 denote the average of the values assumed by f(•, •) on the circle
of points which stand in proximity r to (x, y):

〈f(x, y; r)〉 ≡ 1
2πr

∫ 2π

0

∑
1
n!r

n(cosφ ∂
∂x + sinφ ∂

∂y )nf(x, y) · rdφ

=
∑

1
n!r

n

{
1
2π

∫ 2π

0

(cosφ ∂
∂x + sinφ ∂

∂y )n dφ
}
f(x, y)

Asking Mathematica to perform the integrals, we are reminded that
{
etc.

}
necessarily vanishes unless n is even, and informed that in those cases it assumes
such values as to yield17

=
{

1 + 0 + 1
2!

1
2r

2∇2 + 0 + 1
4!

3
8r

4∇4 + 0 + 1
6!

5
16r

6∇6 (52.2)

+ 0 + 1
8!

35
128r

8∇8 + 0 + 1
10!

63
256r

10∇10 + 0 + · · ·
}
f(x, y)

15 In view of the sign alternation evident in (51) one could on this basis argue
that the phenomenon discussed in §1 (case N = 1) is in fact dimensionally
persistent.

16 The technique, as it relates to ∇2 in the 2-dimensional case, is described
in the introduction to “Algebraic theory of spherical harmonics” (), and at
pp. 84–88 in classical field theory () is used in its N -dimensional
formulation (N → ∞) to carry the notion of a “Laplacian” over into the
calculus of functionals. Here I have N -dimensional interest in the generalization
∇2 → ∇2m.

17 The calculation produces multinomials
∑

a+b=2m(numeric)
(
∂
∂x

)a( ∂
∂y

)b of
ascending complexity which, upon the instruction Simplify[%], are reassembled
to read (numeric)

[(
∂
∂x

)2 +
(
∂
∂y

)2]m. The process is a wonder to witness.
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In the case N = 3 one proceeds similarly, but averages over the sphere of
proximity r:

〈f(x, y, z; r)〉

≡
∑

1
n!r

n

{
1

4πr2

∫ π

0

∫ 2π

0

(sin θ cosφ ∂
∂x + sin θ sinφ ∂

∂y + cos θ ∂
∂z )n

· r2 sin θ dφdθ

}
f(x, y, z)

=
{

1 + 0 + 1
2!

1
3r

2∇2 + 0 + 1
4!

1
5r

4∇4 + 0 + 1
6!

1
7r

6∇6 + · · ·
}
f(x, y, z) (52.3)

In the case N = 4 one averages over a hypersphere:18

〈f(x, y, z, u; r)〉

≡
∑

1
n!rn

{
1

2π2r3

∫ π

0

∫ π

0

∫ 2π

0

(r sin θ2 sin θ1 sinφ ∂
∂y + r sin θ2 sin θ1 cosφ ∂

∂x + r sin θ2 cos θ1
∂
∂z + r cos θ2

∂
∂u )n

· r3 sin2 θ2 sin θ1 dφdθ1dθ2

}
f(x, y, z)

=
{

1 + 0 + 1
2!

1
4r

2∇2 + 0 + · · ·
}
f(x, y, z, u) (52.4)

But beyond this point (or some point) direct “averaging over the hypersphere”
becomes unfeasible. More elegantly efficient methods are developed in the
classical field theory notes already cited; there I show that

〈xp〉N ≡ xp averaged over surface of an N -sphere of radius r

=
SN−1

SN
rp




0 when p is odd

2
∫ 1

2π

0

cosp θ sinN−2 θ dθ when p is even

where the numbers SN acquire meaning from the statements

area of N -sphere of radius r is given by SNrN−1

SN =
2π

N
2

Γ
(
N
2

)
18 I take my definition of the hyperspheric coordinate system, the description

of the associated Jacobian, etc. from §4 of the first of the sources cited in
Footnote 16. It is, by the way, one thing to speak of averaging over a
hypersphere, and quite another to do it; Mathematica kept exhausting its
(specially expanded) memory when attempting direct evaluation even of the
∇2 coefficient in the 4-dimensional case, and to obtain the next term in that
same series would have to evaluate 44 = 64 triple integrals.
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which entail
SN−1

SN
=

Γ
(
N
2

)
√
πΓ

(
N−1

2

) : N = 2, 3, 4, . . .

The integral is tabulated, and known also to Mathematica :

2
∫ 1

2π

0

cosp θ sinq θ dθ =
Γ

(
1+p
2

)
Γ

(
1+q
2

)
Γ

(
2+p+q

2

) : �[q ] > −1

So we have

〈xp〉N =




0 : p odd

Γ
(

1+p
2

)
Γ

(
N
2

)
√
πΓ

(
p+N

2

) : p even

Building upon this information, I show in the source most recently cited that—
consistently with the evidence of (52)—

〈f(xxx; r)〉 =
{
〈x0〉N + 1

2! 〈x
2〉Nr2∇2 + · · ·

}
f(xxx)

=
{
1 + 1

2!
1
N r2∇2 + · · ·

}
f(xxx) : N = 2, 3, . . .

But the argument can be extended,19 to give

〈f(xxx; r)〉N =
{ ∞∑

m=0

1
(2m)!

〈x2m〉Nr2m∇2m
}
f(xxx) (53)

The generating function technique serves usefully to expose the detailed
meaning of this strong result; form

FN(R) ≡
∞∑

m=0

〈x2m〉NR2m (54.1)

and with the assistance of Mathematica obtain

F2(R) = 1√
1−R2

= 1 + 1
2R

2 + 3
8R

4 + 5
16R

6 + 35
128R

8 + 63
256R

10 + · · ·
F3(R) = arctanh(R)

R

= 1 + 1
3R

2 + 1
5R

4 + 1
7R

6 + 1
9R

8 + 1
11R

10 + · · ·
F4(R) = 2 1−

√
1−R2

R2

= 1 + 1
4R

2 + 1
8R

4 + 5
64R

6 + 7
128R

8 + 21
512R

10 + · · ·
F5(R) = 3

2
R−(1−R2)arctanh(R)

R3

= 1 + 1
5R

2 + 3
35R

4 + 1
21R

6 + 1
33R

8 + 3
143R

10 + · · ·...

19 “Unfortunately, there is not room enough in this margin to permit me
to write out the demonstration,” which is so pretty as to merit independent
discussion on some other occasion.
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which precisely reproduce (and vastly extend) the laborously achieved data
displayed in (52).

It is pertinent to notice that generating functions of the “exponential”
design20

GN(R) =
∞∑

m=0

1
(2m)!

〈x2m〉NR2m (54.2)

are also tractable; Mathematica supplies

G2(R) = BesselI[0, R ]

G3(R) = Sinh(R)
R =

√
π
2R BesselI[ 1

2 , R ]

G4(R) = 2
R BesselI[1, R ]

G5(R) = 3RCosh(R)−Sinh(R)
R3 = 3

√
π

2R3 BesselI[ 3
2 , R ]

...

GN(R) = Γ
(
N
2

)(
2
R

)N−2
2 BesselI [ N−2

2 , R ]

= 1√
π

Γ
(

N
2

)
Γ
(

N−1
2

) ∫ +1

−1

(1− t2)
N−3

2 eRtdt : N > 1 (55)

where the functions BessellI[n,z] are more commonly denoted In(z), and
are known as “hyperbolic Bessel functions;” their properties are summarized
in Spanier & Oldham’s Chapter 50. In the notation of (54.2) our fundamental
identity (53) becomes

〈f(xxx; r)〉N =
{
GN(r∇)

}
f(xxx) (56)

The integral representation (55)—adapted from a formula presented by Spanier
& Oldham (of which several variants appear in §8.431 of Gradshteyn & Ryzhik)
and confirmed by Mathematica—becomes exceptionally simple in the case
N = 3, but is in all cases remarkable for the simplicity with which R enters
into the integrand. Expansion of the exponential leads back again to (52).

To summarize: 〈f(xxx; r)〉N is, by construction, invariant with respect to
rotations about the point xxx. The function f(xxx) supports lots of local derivative
structure ∂a1

1 ∂a2
2 · · · ∂aN

N f(xxx), but the only such structure which enters into the
description of 〈f(xxx; r)〉N is, as we have established by explicit calculation, that
associated with the expressions ∇2mf(xxx),21 and such expressions contribute
with weights to which we can now assign precise values.

20 I borrow my terminology from H. S. Wilf, Generatingfunctionology , ().
21 One might argue on transformation-theoretic grounds that it could not be

otherwise: if ϕ(aaa) is a scalar-valued rotationally-invariant function of a vector aaa
then (in the absence of auxiliary apparatus) ϕ must be expressible as a function
of aaa···aaa.
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As final preparation for the work ahead I turn now to a different aspect of
our topic: One has

f(xxx) =
∫

f(yyy)δ(yyy − xxx) dNy (57)

giving

∇2f(xxx) =




∫
∇2
y f(yyy)δ(yyy − xxx) dNy on the one hand, but∫

f(yyy)∇2
x δ(yyy − xxx) dNy on the other

Equivalence is established by appeal jointly to Green’s theorem22 and to the
circumstance that ∇2

x δ(yyy − xxx) = (−)2∇2
y δ(yyy − xxx). More generally, we have

∇2mf(xxx) =
∫∫
· · ·

∫
f(yyy)∇2mδ(xxx− yyy) dNy

To perform the integration, install hyperspherical coordinates at xxx and, after
integrating with respect to all angles, obtain

∇2mf(xxx) =
∫ ∞

0

〈f(xxx; r)〉N∇2mδ(r) · SNr
N−1 dr (58)

The result to which we have been led is from one point of view so formal as
to be nearly devoid of meaning, yet from another too nearly tautologous to give
serious offense. It has been designed to prefigure the representation theory to
which I now turn; when thus transmogrified it will be deprived simultaneously
of both defects.

4. Multivariate Gaussian representation theory. Occupying a place of distinction
among the representations of δ(xxx) are the rotationally invariant representations,
and of those we concentrate upon one in particular: the Gaussian representation

δ(xxx) = lim
ε↓0

(
1

2πε

) 1
2Ne−

1
2ε r

2
where r2 ≡ xxx···xxx (59)

= x2
1 + x2

2 + · · ·+ x2
N

which gives back (6.0) in the case N = 1. In the latter case I at (42) introduced
a notational convention which entails

W0(z; ε) =
(

1
2πε

) 1
2 e−

1
2ε z

2

22 By which term mathematicians and physicists tend to understand distinct
things. I allude to the statement (see, for example, H. Lass, Vector and Tensor
Analysis (), p. 118) which in the 3-dimensional case reads∫∫∫

R

u∇2v d(volume) =
∫∫∫

R

v∇2u d(volume) +
∫∫

∂R

{
u∇∇∇v − v∇∇∇u

}
··· dsdsds

and achieves (compare (5)) a multidimensional analog of “integration by parts.”
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By extension of that convention I will write

W0(r; ε;N) =
(

1
2πε

) 1
2Ne−

1
2ε r

2
(60)

but will frequently omit some of the cumbersome detail when confusion seems
unlikely to result. Notice that no Jacobian has been absorbed into the definition
of W0(r; ε;N); one has

f(xxx) = lim
ε↓0

fε(xxx) (61)

with

fε(xxx) ≡
∫∫
· · ·

∫
f(yyy)W0(r; ε;N) dy1dy2 . . . dyN

r ≡
√

(yyy − xxx)···(yyy − xxx)

which upon the introduction of xxx-centered hyperspherical coordinates becomes

=
∫ ∞

0

∫∫
· · ·

∫
f(xxx + rrr)W0(r; ε;N) · Jacobian(angles, r) d(angles)dr

=
∫ ∞

0

〈f(xxx; r)〉NW0(r; ε;N) · SNr
N−1 dr (62)

Equation (58) can now be representated/interpreted as the limit ε ↓ 0 of the
statement

∇2mfε(xxx) =
∫ ∞

0

〈f(xxx; r)〉N∇2mW0(r; ε;N) · SNr
N−1 dr (63)

at which point we acquire an interest in the description of expressions of the
form

∇2mf(x1, x2, . . . , xN) when f(x1, x2, . . . , xN) = ϕ(r)

An elementary argument23 gives

∇2f =
{[

r d
dr + N

]
1
r
d
dr

}
ϕ (64.1)

in connection with which it will sometimes be useful to

Write ϕ(r) ≡ φ(s) with s ≡ 1
2r

2 which entails 1
r
d
dr = d

ds

23

∇∇∇f = ϕ′∇∇∇r = rrr · 1
r
d
drϕ

↓
∇2f = rrr···∇∇∇

(
1
r
d
drϕ

)
+ (∇∇∇···rrr) 1

r
d
drϕ with ∇∇∇···rrr = N
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and thus to obtain

∇2f =
{[

2s d
ds + N

]
d
ds

}
φ (64.2)

=
{
2
[
d
dss + N−2

2

]
d
ds

}
φ

Here I digress to visit some facts of independent interest, since we happen
to be in the neighborhood. If N = 1 then

∇2f =
{
2s

(
d
ds

)2 + 1 d
ds

}
φ

so if φ(s) is harmonic then
φ(s) = a

√
s + b

If N = 2 then
∇2f =

{
2s

(
d
ds

)2 + 2 d
ds

}
φ

so if φ(s) is harmonic then

φ(s) = a log s + b

For N > 2 harmonicity entails

φ(s) = as
2−N

2 + b

Enforcement of the boundary condition φ(∞) = 0 is not possible (except
trivially) if N = 1 or N = 2, but for N ≥ 3 entails b = 0; look therefore
to the functions

φ(s) =

{
a
√
s : 1-dimensional case

a log s : 2-dimensional case
as

2−N
2 : N -dimensional case

which in r-language become (after simplifications)

ϕ(r) =




(1/r)−1 = r : 1-dimensional case
log(1/r) : 2-dimensional case

(1/r)+1 : 3-dimensional case
(1/r)+2 : 4-dimensional case

...
(1/r)N−2 : N -dimensional case

These functions are—except in the case N = 1—harmonic except at the origin.
To assign measure to the strength of the singularity I proceed non-standardly:24

24 I proceed, that is to say, by adaptation of a “regularization trick” borrowed
from p. 17 of my electrodynamics (). The distinguishing merit of the
method—slight though it is—is that it achieves its result without appeal to
Gauss’ divergence theorem.
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Introduce functions

g2(r; ε) ≡ log
(

1
r+ε

)
g3(r; ε) ≡ 1

(r+ε)1

g4(r; ε) ≡ 1
(r+ε)2...

gN(r; ε) ≡ 1
(r+ε)N−2

which are non-singular except in the limit ε ↓ 0. Working from (64.1), compute

∇2g2(r; ε) = − ε
r(r+ε)2

∇2g3(r; ε) = − 2ε
r(r+ε)3

∇2g4(r; ε) = − 6ε
r(r+ε)4...

∇2gN(r; ε) = − (N−1)(N−2)ε
r(r+ε)N : N ≥ 3

These functions vanish in the limit ε ↓ 0, but for ε �= 0 become singular at
r = 0. To measure the strength of the singularity we compute

IN ≡
∫ R

0

∇2gN(r; ε) · SNr
N−1 dr

to obtain

I2 = − S2 + εS2
1

R+ε

I3 = −1S3 + εS3
2R+ε

(R+ε)2

I4 = −2S4 + εS4

{
factor that vanishes as R ↑ ∞

}
I5 = −3S5 + εS5

{
factor that vanishes as R ↑ ∞

}
I6 = −4S6 + εS6

{
factor that vanishes as R ↑ ∞

}
...

from which we conclude that

lim
ε↓0
∇2 log

(
1

r+ε

)
= − S2δ(xxx) : 2-dimensional, with S2 = 2π

lim
ε↓0
∇2 1

(r+ε)1
= − S3δ(xxx) : 3-dimensional, with S3 = 4π

lim
ε↓0
∇2 1

(r+ε)2
= −2S4δ(xxx) : 4-dimensional, with S4 = 2π2

lim
ε↓0
∇2 1

(r+ε)3
= −3S5δ(xxx) : 5-dimensional, with S5 = 8

3π
2

lim
ε↓0
∇2 1

(r+ε)4
= −4S6δ(xxx) : 6-dimensional, with S6 = π3

...
lim
ε↓0
∇2 1

(r+ε)N−2 = −(N − 2)SNδ(xxx) with SN = 2π
N
2

Γ ( N
2 )

(65)
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With (65) we are placed in position to do in N dimensions what physicists are
often called upon to do in the case N = 3: given an instance of the Poisson
equation

∇2A(xxx) = B(xxx) (66.1)

we have the formal solution

A(xxx) = ∇−2B(xxx) (66.2)

to which we can ascribe the non-local meaning

=




− 1
S2

∫∫
B(yyy) log

[
1

r(yyy−xxx)

]
dy1dy2

− 1
(N−2)SN

∫∫
· · ·

∫
B(yyy)

[
1

r(yyy−xxx)

]N−2

dy1dy2 · · · dyN : N ≥ 3
(66.3)

We have at this point established contact with the theory of Green’s functions.
Notice that many of the equations presented above make sense even when N
is not an integer , but to complete that line of generalization we must be in
position to assign useful meaning to the notion

f(xxx) with xxx ∈ Enon-integer

With that cake in the oven, I return now to Gaussian representation theory:

At (60) I introduced

W0(r; ε;N) =
(

1
2πε

) 1
2Ne−

1
2ε r

2
: Gaussian representation of δ(xxx)

and seek now to construct

W2m(r; ε;N) = ∇2mW0 : Gaussian representation of ∇2mδ(xxx)

It proves convenient to make the familiar adjustment r → s ≡ 1
2r

2, writing

W0(r; ε;N) ≡ w0(s; ε;N) =
(

1
2πε

) 1
2Ne−s/ε

and working from (64.2):

∇2W0 =
{[

2s d
ds + N

]
d
ds

}
w0(s; ε;N)

I begin by recording the results of some experiments inspired by the fact that
my nose has picked up the scent25 of a herd of associated Laguerre polynomials
La
n(s) —known to Mathematica as LaguerreL[n,a,s]—grazing not too far

away:

25 My nose had been pre-sensitized by exposure to the identities (see, for
example, Magnus & Oberhettinger, p. 84)

He2n(x) = (−2)nn! L
− 1

2
n

(
x2

2

)
He2n+1(x) = (−2)nn!xL+ 1

2
n

(
x2

2

)
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{[
2s d

ds + N
]
d
ds

}1
e−s = e−s

[
−N + 2s

]
= (−2)11! e−sL

1
2 (N−2)
1 (s){[

2s d
ds + N

]
d
ds

}2
e−s = e−s

[
N2 + N(2− 4s) + 4(−2 + s)s

]
= (−2)22! e−sL

1
2 (N−2)
2 (s){[

2s d
ds + N

]
d
ds

}3
e−s = e−s

[
−N3 + 6N2(−1 + s)

− 4N(2− 9s + 3s2) + 8s(6− 6s + s2)
]

= (−2)33! e−sL
1
2 (N−2)
3 (s)

Evidently we have come upon an identity{[
s d
ds + (a + 1)

]
d
ds

}n
e−s = (−)nn! e−sLa

n(s)

= (−)ns−a
(
d
ds

)n{
e−ssn+a

}
which conforms precisely to our needs, but is of such curious design that formal
proof still eludes me; I present

{[
2s d

ds + N
]
d
ds

}n
e−s = (−2)nn! e−sL

1
2 (N−2)
n (s) (67)

as an “experimental” fact, but a fact nonetheless. I note that (67) appears to
be subject to none of the familiar dimensionality restrictions, but to work for
all real values of N ; for example, if we set n = 3 then (whether we work from
the expression on the left or the expression on the right) we obtain

e−s[ 3 + 18s− 36s2 + 8s3] : N = −1
1
8e

−s[ 21 + 252s− 336s2 + 64s3] : N = − 1
2

8e−s[ 0 + 6s− 6s2 + s3] : N = 0
1
8e

−s[−45 + 540s− 432s2 + 64s3] : N = 1
2

e−s[−15 + 90s− 60s2 + 8s3] : N = 1

Reinstating now the details which distinguish w0(s; ε;N) from e−s, we on
the basis of (67) obtain

w2m(s; ε;N) =
{[

2s d
ds + N

]
d
ds

}m
w0(s; ε;N) (68.1)

=
(

1√
2πε

)N(
− 2

ε

)m
Γ (m + 1)e−s/εL

1
2 (N−2)
m (s/ε) (68.2)

of which I give now some examples:26

26 In each case I have, with the assistance of Mathematica, used both variants
of (68) to obtain the result quoted.
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Results special to the case N = 2

I look to this case first because it lends itself so uniquely well to graphical
representation. We have

w0(s; ε; 2) =
(

1
2πε

)
e−s/ε

which is normalized in the sense (use rdr = ds and S2 = 2π) that∫ ∞

0

w0(s; ε; 2) · S2 ds = 1 : (all ε > 0)

Working from (68) we compute

w2(s; ε; 2) =
(

1
2πε

) 2
2 1
ε2 e

−s/ε 2[s− ε]

w4(s; ε; 2) =
(

1
2πε

) 2
2 1
ε4 e

−s/ε 4[s2 − 4sε + 2ε2]

w6(s; ε; 2) =
(

1
2πε

) 2
2 1
ε6 e

−s/ε 8[s3 − 9s2ε + 18sε2 − 6ε3]
...

where I have refrained from making obvious simplifications in order to expose
more clearly the pattern of events. These results are illustrated in Figures
11–13. Comparative study of the figures shows that the height/depth of the
central spike is a rapidly increasing function of ascending order, and that the
central spikes conform to the “principle of sign alternation” discussed in §1. The
surrounding terrain gives rotationally invariant smooth meaning to the notion
of “neighborhood” which was encountered (in lattice approximation) on p. 30.

(See the figures, after which the text resumes.)
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1 2 3 4

-0.5

-0.4

-0.3

-0.2

-0.1

Figure 11: Gaussian representation of the harmonic weight
function in the 2-dimensional case. Should be regarded as frames
(frame number ε = 3/4) from the movies

lim
ε↓0

W2(r; ε; 2)above and lim
ε↓0

W2(
√

x2 + y2; ε; 2)below

As the film progresses, the design—in the tradition of Figure 2—
becomes ever more compacted about the origin.
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1 2 3 4
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1.5

2

2.5

3

Figure 12: Gaussian representation of the biharmonic weight
function in the 2-dimensional case. Should be regarded as frames
(frame number ε = 3/4) from the movies

lim
ε↓0

W4(r; ε; 2)above and lim
ε↓0

W4(
√

x2 + y2; ε; 2)below

As the film progresses, the design becomes ever more compacted
about the origin.
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Figure 13: Gaussian representation of the triharmonic weight
function in the 2-dimensional case. Should be regarded as frames
(frame number ε = 3/4) from the movies

lim
ε↓0

W6(r; ε; 2)above and lim
ε↓0

W6(
√

x2 + y2; ε; 2)below

As the film progresses, the design becomes ever more compacted
about the origin.
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Results special to the case N = 3

Here our results acquire a latently familiar look because we inhabit this case;
we have

w0(s; ε; 3) =
(

1
2πε

) 3
2 e−s/ε

which is normalized in the sense (use r2dr =
√

2s ds and S3 = 4π) that

∫ ∞

0

w0(s; ε; 3) · S3

√
2s ds = 1 : (all ε > 0)

Working from (68) we compute

w2(s; ε; 3) =
(

1
2πε

) 3
2 1
ε2 e

−s/ε[2s− 3ε]

w4(s; ε; 3) =
(

1
2πε

) 3
2 1
ε4 e

−s/ε[4s2 − 20sε + 15ε2]

w6(s; ε; 3) =
(

1
2πε

) 3
2 1
ε6 e

−s/ε[8s3 − 84s2ε + 210sε2 − 105ε3]
...

Results special to the case N = 4

We have

w0(s; ε; 4) =
(

1
2πε

)2
e−s/ε

which is normalized in the sense (use r3dr = 2s ds and S4 = 2π2) that

∫ ∞

0

w0(s; ε; 4) · S42s ds = 1 : (all ε > 0)

Working from (68) we compute

w2(s; ε; 4) =
(

1
2πε

) 4
2 1
ε2 e

−s/ε 2[s− 2ε]

w4(s; ε; 4) =
(

1
2πε

) 4
2 1
ε4 e

−s/ε 4[s2 − 6sε + 6ε2]

w6(s; ε; 4) =
(

1
2πε

) 4
2 1
ε6 e

−s/ε 8[s3 − 12s2ε + 36sε2 − 24ε3]
...
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Results appropriate to the general case

We have
w0(s; ε;N) =

(
1

2πε

) 1
2Ne−s/ε

which is (as Mathematica confirms) normalized in the sense—use

SN · rN−1dr = SN · (2s)
N−2

2 ds = 2π
N
2

Γ ( N
2 )
· (2s)N−2

2 ds

—that∫ ∞

0

w0(s; ε;N) · 2π
N
2

Γ ( N
2 )
· (2s)N−2

2 ds = 1 : �[N ] > 0 & �[ε ] > 0

and (working most conveniently from (68.2)) we compute

w2(s; ε;N) =
(

1
2πε

)N
2 1

ε2 e
−s/ε [2s−Nε]

w4(s; ε;N) =
(

1
2πε

)N
2 1

ε4 e
−s/ε [4s2 − 8sε− 4Nsε + 2Nε2 + N2ε2]

w6(s; ε;N) =
(

1
2πε

)N
2 1

ε6 e
−s/ε [8s3 − 48s2ε− 12Ns2ε + 48sε2 + 36Nsε2

+ 6N2sε2 − 8Nε3 − 6N2ε3 −N3ε3]
...

from which all previous results can be recovered as particular instances. Look
finally to the simplest case of all—the case from which we started:

Results special to the case N = 1

We have
w0(s; ε; 1) =

(
1

2πε

) 1
2 e−s/ε

which is normalized in this non-standard formulation (use dr = (2s)−1 ds and
S1 = 2) of the familiar Gaussian sense:∫ ∞

0

w0(s; ε; 1) · S1
1√
2s

ds = 1 : (all ε > 0)

Working from (68) we compute

w2(s; ε; 1) =
(

1
2πε

) 1
2 1
ε2 e

−s/ε [2s− ε]

w4(s; ε; 1) =
(

1
2πε

) 1
2 1
ε4 e

−s/ε [4s2 − 12sε + 3ε2]

w6(s; ε; 1) =
(

1
2πε

) 1
2 1
ε6 e

−s/ε [8s3 − 60sε + 90sε2 − 15ε3]
...
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giving

W2(r; ε; 1) = w2( 1
2r

2; ε; 1) = 1√
2πε

1
ε2 e

− 1
2ε r

2
[r2 − ε]

W4(r; ε; 1) = w4( 1
2r

2; ε; 1) = 1√
2πε

1
ε4 e

− 1
2ε r

2
[r4 − 6r2ε + 3ε2]

W6(r; ε; 1) = w6( 1
2r

2; ε; 1) = 1√
2πε

1
ε6 e

− 1
2ε r

2
[r6 − 15r4ε + 45r2ε2 − 15ε3]︸ ︷︷ ︸... Hermite polynomials

at which point we have, in effect, recovered (6.2/6.4/6.6/. . . ).

The effect of dimensional adjustment

N −→ N + 1 −→ N + 2 −→ · · ·

is illustrated in Figures 14–16; as N becomes large the contribution of outlying
suburbs of the central concentration diminishes—and seems ultimately to vanish
altogether; it becomes in this sense difficult to distinguish∇4 or∇6. . . from δ(xxx).
I cannot claim to understand this phenomenon, which seems counterintuitive;
it is associated, I presume, with the more familiar fact that in high dimension
“most of the points interior to a hypersphere lie very near to its surface.”

The oppressive detail from which we now emerge is of little interest in itself:
it was presented only to illustate the pattern of events—only, that is to say, to
make plain the meaning of the integrand which enters at (63) into the integral
representation of ∇2mf(xxx). Even the integral representation itself—though it
does provide insight into “what kind of a thing ∇2m is”—might be dismissed
as “uninteresting” by anyone willing simply to sit down and compute ∇2mf(xxx).
Or, working from (53), one could attempt to compute

(〈x2m〉N)−1
(
∂
∂r

)2m〈f(xxx; r)〉N
∣∣∣
r=0

The Gaussian representation theorem (63) will acquire real interest only if it
can be shown to bring formal unity to notions which seemed otherwise distinct.
Or to permit us to formulate thoughts which were otherwise unthinkable. Or to
undertake computations which we were otherwise powerless to undertake. To
those ends. . .

Recall that we have already at (42) made the acquaintance of the confluent
hypergeometric “Kummer function”

M(a; b; z) = 1F1(a, b, z) = Hypergeometric1F1[a,b,z]

= 1 + az
b + a(1+a)z2

2!b(1+b) + a(1+a)(2+a)z3

3!b(1+b)(2+b) + · · ·

to which Spanier & Oldham devote their Chapter 47. Of more immediate
interest now will be its close relative, the “Tricomi function” U(a; b; z)27 which

27 Spanier & Oldham, Chapter 48. The functions are treated simultaneously
in Abramowitz & Stegun, Chapter 13.
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Figure 14: Graphs of

W6(r; ε;N)
W6(0; ε;N)

: N = 1, 2, 3, 4

intended to provide normalized illustration of the fact that weight
functions of given order become progressively flatter as the space
dimension N increases.
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Figure 15: Graphs of the ratio W20(r; ε;N)/W20(0; ε;N) with
N =1, 5 & 20, intended to provide more vivid evidence of the same
phenomenon.
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Figure 16: Graphs of

W2m(r; ε; 20)
W2m(0; ε; 20)

: m = 1, 5 and 10

The concentric “suburban rings” have become invisible. The central
radius grows smaller as m increases.

U(a; b; z) = z−a
2F0(a; 1 + a− b;−1/z) = HypergeometricU[a,b,z]

= Γ (1−b)
Γ (1+a−b)M(a; b; z) + z1−b · Γ (b−1)

Γ (a) M(1 + a− b; 2− b; z) (69)

—are linearly independent solutions of “Kemmer’s equation;” i.e., of the
self-adjoint differential equation which can be written

z d2w
dz2 + (b− z)dwdz − aw = 0 ; equivalently d

dz

[
zbe−z dw

dz

]
= azb−1e−zw

The latter equation has a very “Laguerre-ish” look about it, and indeed: the
associated Laguerre polynomial

Lα
n(z) = LaguerreL[n,α,z] = 1

n!z
−α

(
d
dz

)n[
zn+αe−z

]
satisfies

z d2w
dz2 + (1 + α− z)dwdz + nw = 0

which is Kummer’s equation in the case b �→ 1 + α and a �→ −n. We are not
surprised, therefore, to be informed (Spanier & Oldham, 23:12:14; Abramowitz
& Stegun, 13.6.9 and 13.6.27) that

Lα
n(z) = Γ (n+α+1)

Γ (n+1)Γ (α+1)M(−n; 1 + α; z) (70.1)

(−)nΓ (n + 1)Lα
n(z) = U(−n; 1 + α; z) (70.2)
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My desire is to enlarge upon this slight variant of (68)

w2m(s; ε;N) =
(

1√
2πε

)N(
2
ε

)m · e−t(−)mΓ (1 + m)L
1
2 (N−2)
m (t) (71)

t ≡ s/ε

in such a way as to achieve escape from the “tyranny of the integers” without
incurring the unwelcome complexification implicit in the observation that

(−)m is complex except when m = . . . ,−2,−1, 0,+1,+2, . . .

Equation (70.2) seems in this light particularly attractive, but lessons learned
from arduous exploration of that pathway—particularly the observation that

(−)m = cosmπ

—lead me back now again to a renewed interest in (70.1). I propose to study
the implications of writing28

w̃2m(s; ε;N) =
(

1√
2πε

)N(
2
ε

)m · e−t cosmπ
Γ ( N

2 +m)

Γ ( N
2 )

M(−m; N
2 ; t) (72.1)

which by “Kummer’s transformation”29 M(a; b; z) = ezM(b−a; b;−z) can also
be written

=
(

1√
2πε

)N(
2
ε

)m · cosmπ
Γ ( N

2 +m)

Γ ( N
2 )

M(N2 + m; N
2 ;−t) (72.2)

Additional variants are made possible by this consequence

cosmπ · Γ (N2 + m) = π
cosmπ

sin(N2 + m)π
1

Γ (1− N
2 −m)

(73)

sin(N2 + m)π = sin N
2 π cosmπ + cos N

2 π sinmπ

of the gamma reflection formula.30 It is to gain a better sense of where we now
stand that I look to special cases:

In the one-dimensional case we have

w̃2m(s; ε; 1) =
(

1√
2πε

)(
2
ε

)m 1√
π




cosmπΓ ( 1
2 + m)M( 1

2 + m; 1
2 ;−t)

πe−t 1
Γ ( 1

2−m)
M(−m; 1

2 ; t)
(74.1)

28 I will write now w̃2m instead of w2m to emphasize that I have adopted a
modified stance, and to facilitate comparing the new with the old.

29 See Abramowitz & Stegun, 13.1.27; Spanier & Oldham, 47:5:1. This
important discovery of Gauss-Kummer is precisely the “obscure identity” which
in the caption to Figure 4 I declined to think about!

30 Abramawitz & Stegun, 6.1.17.
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On the other hand, (42) yields expressions which, when adapted to present
notational conventions, read

(
1√
2πε

)(
2
ε

)m 1√
π




cosmπΓ ( 1
2 + m)M( 1

2 + m; 1
2 ;−t)

−2
√
t sinmπΓ (1 + m)M(1 + m; 3

2 ;−t)

πe−t 1
Γ ( 1

2−m)
M(−m; 1

2 ; t)

2π
√
t e−t 1

Γ (−m)M( 1
2 −m; 3

2 ; t)

—of which (74.1) captures only a fragment,31 yet a fragment sufficient to
reproduce the N = 1 data presented on p. 46. That data derived from (68.2);
we have

w̃2m(s; ε; 1) = w2m(s; ε; 1) : m = 0, 1, 2, . . .

According to (68.2), w2m(s; ε; 1) becomes imaginary for m = ± 1
2 ,± 3

2 ,± 3
2 , . . .

(and Mathematica is unable to assign meaning to Lα
m(t) for t < 0), but (74.1)

gives
w̃2m(s; ε; 1) = 0 : m = + 1

2 ,+
3
2 ,+

5
2 , . . .

Though equation (74.1)upper (for evident reasons) becomes indeterminate at
m = − 1

2 ,− 3
2 ,− 5

2 , . . ., (74.1)lower assigns meaning to those cases; for example,
we have

w̃−1(s; ε; 1) = 1
2

w̃−3(s; ε; 1) = 1
4 (2s + ε)

w̃−5(s; ε; 1) = 1
48 (4s2 + 12sε + 3ε2)

And whether we work from (74.1)upper or (74.1)lower we find

w̃−2(s; ε; 1) = 1√
2π

e−s/ε
√
ε
{

1 + es/ε
√

πs/ε erf
√

s/ε
}

To summarize: the Laplacian theory implicit in (72), when pulled back to one
dimension, reproduces only a fraction of the full fractional calculus supported
by (42),32 but—insofar as it permits m to become fractional/negative—does
extend the reach of (68.2).

In the two-dimensional case (72) gives

w̃2m(s; ε; 2) =
(

1√
2πε

)2( 2
ε

)m



cosmπ Γ (1 + m)M(1 + m; 1;−t)

−πe−t cotmπ 1
Γ (−m)M(−m; 1; t)

(74.2)

We find that (74.2)upper reproduces the N = 2 data presented on p. 41, though
(74.2)lower becomes indeterminate at for m = 0, 1, 2, . . .. One has, whether

31 Equations (74.1) capture only the terms which are “even in
√
t .”

32 I will have more to say about how that comes to be so.
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working from the upper variant or the lower,

w̃2m(s; ε; 2) = 0 : m = ± 1
2 ,± 3

2 ,± 5
2 , . . .

and

w̃2m(s; ε; 2) = ComplexInfinity : m = −1,−2,−3, . . .

Look finally to the three-dimensional case: (72) gives

w̃2m(s; ε; 3) =
(

1√
2πε

)3( 2
ε

)m 2√
π




cosmπΓ ( 3
2 + m)M( 3

2 + m; 3
2 ;−t)

−πe−t 1
Γ (− 1

2−m)
M(−m; 3

2 ; t)
(74.3)

At m = 0, 1, 2, . . . equations (74.3)upper and (74.3)lower serve equally well to
reproduce the N = 3 data presented on p. 45. Both variants give

w̃2m(s; ε; 3) = 0 : m = − 1
2 ,+

1
2 ,+

3
2 , . . .

At other negative half-integral values (74.3)upper becomes interminate, but
(74.3)lower gives (for example)

w̃−3(s; ε; 3) = − 1
4π

w̃−5(s; ε; 3) = − 1
24π (2s + 3ε)

w̃−7(s; ε; 3) = − 1
480π (4s2 + 20sε + 15ε2)

working from either variant we find

w̃−2(s; ε; 3) = − 1
4π

√
2s

erf
√

s/ε

and that w̃−4(s; ε; 3), w̃−6(s; ε; 3), etc. are given by similar expressions of
ascending complexity.

5. Contact with the theory of Green’s functions. The result just achieved bears
so directly upon the interpretation of (66), and therefore upon what has served
throughout this discussion as a point of primary motivation, that I digress now
to place it in the company of some of the more immediate of its variously-
dimensioned siblings. We work from (72.2)—more specifically, from

w̃−2(s; ε;N) = − ε
2

(
1√
2πε

)N Γ ( N
2 −1)

Γ ( N
2 )

M(N2 − 1; N
2 ;−t)

= − ε
2

(
1√
2πε

)N 2
N−2 ·M(N2 − 1; N

2 ;−t) (75)
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where to obtain the latter simplification I have made use of the functional
equation Γ (z + 1) = zΓ (z)—and compute

� w̃−2(s; ε; 1) = +ε
(

1√
2πε

)1 · [t+ 1
2
√
π erf
√
t + e−t

]
� w̃−2(s; ε; 2) = ±ε

(
1√
2πε

)2 1
0 · 1 ComplexInfinity

� w̃−2(s; ε; 3) = −ε
(

1√
2πε

)3 · 1
2 t

− 1
2
[√

π erf
√
t
]

� w̃−2(s; ε; 4) = −ε
(

1√
2πε

)4 1
2 · t−1

[
1− e−t

]
� w̃−2(s; ε; 5) = −ε

(
1√
2πε

)5 1
3 · 3

4 t
− 3

2
[√

π erf
√
t− 2

√
te−t

]
� w̃−2(s; ε; 6) = −ε

(
1√
2πε

)6 1
4 · 2

1 t
−2

[
1− e−t(1 + t)

]
� w̃−2(s; ε; 7) = −ε

(
1√
2πε

)7 1
5 · 5

8 t
− 5

2
[
3
√
π erf
√
t− 2

√
te−t(3 + 2t)

]
� w̃−2(s; ε; 8) = −ε

(
1√
2πε

)8 1
6 · 3

1 t
−3

[
2− e−t(2 + 2t + t2)

]
...



(76)

Clearly, the even entries (�) are of a type, the odd entries (�) are of a distinct
type. The members of either type are interconnected in a very simple way, as
I now show: one has (see Abramowitz & Stegun, 133.4.7)

M(a + 1; b + 1; t) = b
a · ddtM(a; b; t)

from which it follows in particular that

M(N+2
2 − 1; N+2

2 ;−t) = − N
N−2

d
dtM(N2 − 1; N

2 ; t)

Returning with this information to (75) we obtain

w̃−2(s; ε;N + 2) = 1
2πε

N−2
N

{
− ε

2

(
1√
2πε

)N 2
N−2 ·M(N+2

2 − 1; N+2
2 ;−t)

}
= − 1

2πε
d
dt

{
− ε

2

(
1√
2πε

)N 2
N−2 ·M(N2 − 1; N

2 ;−t)
}

= − 1
2π

d
ds w̃−2(s; ε;N) (77)

which can be (has been) used in a scheme of the form

� w̃−2(s; ε, 1)→ w̃−2(s; ε, 3)→ w̃−2(s; ε, 5)→ w̃−2(s; ε, 7)→ · · ·
� w̃−2(s; ε, 4)→ w̃−2(s; ε, 6)→ w̃−2(s; ε, 8)→ · · ·

to regenerate the entire list (76) on the basis only of the information written
into the“seed functions” w̃−2(s; ε; 1) and w̃−2(s; ε; 4). Inversely, one has

w̃−2(s; ε;N) =w̃−2(0; ε;N)− 2π
∫ s

0

w̃−2(σ; ε;N + 2) dσ (78)

w̃−2(0; ε;N) = −ε
(

1√
2πε

)N 1
N−2
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but (essentially because w̃−2(0; ε;N) �= 0) I have failed in my attempts to
achieve w̃−2(0; ε;N) ←− w̃−2(0; ε;N + 1) by semi -integration, and thus to
construct an analog of the elegant Hadamard-Ritsz semi-differentiation scheme

�→�→�→�→�→ · · ·

described in §7 of “Construction & Physical Application of the Fractional
Calculus (). It is, however, interesting in connection with

w̃−2(s; ε; 2)←− w̃−2(s; ε; 4)

that
∫ t

0
τ−1(1−e−τ ) dτ = EulerGamma+Gamma[0,s]+Log[s], so w̃−2(s; ε; 2) fails

to exist mainly for the elementary (meaning easily remedied?) reason that
(N − 2)−1 is undefined.

The function M(N2 − 1; N
2 ;−t) satisfies (as Mathematica confirms) this

instance of Kummer’s equation{
t d

2

dt2 +
(
N
2 + t

)
d
dt + N−2

2

}
M(t) = 0

The implication, by (75), is33 that{
ε
[
s d
ds + N

2

]
d
ds +

[
s d
ds + N

2

]
− 1

}
w̃−2(s; ε;N) = 0

But the operator 2
[
s d
ds + N

2

]
d
ds was found at (64.2) to refer to the action of ∇2,

and we are informed by Mathematica that

2
[
s d
ds + N

2

]
d
ds w̃−2(s; ε;N) = AN ·

(
1√
2πε

)N
e−s/ε (79)

AN ≡ (N − 2)Γ ( N
2 −2)

21Γ ( N
2 )

= δ(xxx) in N -dimensional Gaussian representation!

The factor AN is indeterminate in the case N = 2, but assumes unit value in
all other positive integral cases. In the singular case Mathematica supplies

lim
N→2

2
N−2M(N2 − 1; N

2 ;−t) = lim
N→2

{
t

N
2 −1

[
Γ (N2 − 1)− Γ (N2 − 1, t)

]}
and if one were to accept the following reinterpretation of (75)

w̃−2(s; ε; 2) ≡ + ε
2

(
1√
2πε

)2
Γ (0, s/ε) (80)

then computation would give

2
[
s d
ds + 2

2

]
d
ds w̃−2(s; ε; 2) =

(
1√
2πε

)2
e−s/ε

—consistently with (79).

33 Use t = s/ε and d
dt = ε d

ds .
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The functions w̃ν(s; ε;N) are of interest to us for what they accomplish in
the limit ε ↓ 0. Reverting to a prior notation

Wν(r; ε;N) = w̃ν(s; ε;N) by t �→ s
ε �→ r2

2ε

to emphasize that we have now (partially) reinstalled the “physical” variable r,
and recalling (from §3) that

SN ≡ area of unit N -sphere = 2π
N
2 /Γ (N2 )

(for N = 1, 2, 3, . . . we have SN = 2, π, 4π, 2π2, 8
3π

2, π3, 16
15π

3, 1
3π

4, . . .) we look
back again to (76) and obtain

� W−2(r; ε; 1) = + 1
1S1

r+1 ·
[
erf
√
t + 1√

πt
e−t

]
� W−2(r; ε; 2) = 1

4π r0 ·
{
Γ (0, t) ∼ t−1e−t

}
� W−2(r; ε; 3) = − 1

1S3
r−1 ·

[
erf
√
t
]

� W−2(r; ε; 4) = − 1
2S4

r−2 ·
[
1− e−t

]
� W−2(r; ε; 5) = − 1

3S5
r−3 ·

[
erf
√
t− 2√

π

√
te−t

]
� W−2(r; ε; 6) = − 1

4S6
r−4 ·

[
1− e−t(1 + t)

]
� W−2(r; ε; 7) = − 1

5S7
r−5 ·

[
erf
√
t− 2

3
√
π

√
te−t(3 + 2t)

]
� W−2(r; ε; 8) = − 1

6S8
r−6 ·

[
1− e−t(1 + t + 1

2 t
2)

]
...




(81)

where
{
etc.

}
vanishes (the case N = 2 remains exceptional to the end) but all

the terms
[
etc.

]
approach unity in the limit ε ↓ 0. By extrapolation we appear

to have
lim
ε↓0

W−2(r; ε;N) = − 1
(N−2)S

N
r−(N−2) (82)

which is nicely consonant with (65).

Equation (79) can be expressed

∇2W−2(r; ε;N) = W0(r; ε;N) (83)
= δN (rrr) in the limit ε ↓ 0

This is a lovely result: it reproduces the N -dimensional theory of harmonic
Green’s functions (so far as it can proceed without reference to “vanishing on
a boundary”) and makes sense even when N is not an integer . But (83) is a
special instance of a much broader class of even more wonderful results—most
of which would certainly remain conjectural were we denied the computational
power of an engine such as Mathematica. For example, we compute[

2s d2

ds2 + N d
ds

]1
w̃−4(s; ε;N) = −BN · 1

2

(
1√
2πs

)N{
Γ

(
N−2

2

)
− Γ

(
N−2

2 , t
)}

s

BN ≡ (N − 2)(N − 4)Γ ( N−4
2 )

22Γ ( N
2 )[

2s d2

ds2 + N d
ds

]2
w̃−4(s; ε;N) = BN ·

(
1√
2πε

)N
e−s/ε (84.1)
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and similarly[
2s d2

ds2 + N d
ds

]1
w̃−6(s; ε;N) = complicated expression (see below)[

2s d2

ds2 + N d
ds

]2
w̃−6(s; ε;N) = −CN · 1

2

(
1√
2πs

)N{
Γ

(
N−2

2

)
− Γ

(
N−2

2 , t
)}

s

CN ≡ (N − 2)(N − 4)(N − 6)Γ ( N−6
2 )

23Γ ( N
2 )[

2s d2

ds2 + N d
ds

]3
w̃−6(s; ε;N) = CN ·

(
1√
2πε

)N
e−sε (84.2)

The factor BN is, according to Mathematica, “indeterminate” if N = 2 or 4,
but for all other (integral or non-integral) values of N > 0 assumes unit value;
it makes sense therefore to write

lim
N→2

BN = lim
N→4

BN = 1

A similar remark pertains to CN , which is indeterminate if N = 2 or 4 or 6,
but of which it can be asserted that CN = 1: (all N > 0). Equations (84) can
therefore be expressed

∇4W−4(r; ε;N) = W0(r; ε;N) : all N > 0

∇6W−6(r; ε;N) = W0(r; ε;N)
...
= δN (rrr) in the limit ε ↓ 0




(85)

The evident conclusion—that W−4(r; ε;N) supports a theory of biharmonic
Green’s functions, and W−6(r; ε;N) a theory of triharmonic Green’s functions—
is of deep interest in itself, but of even greater is a result exposed along the way
to that conclusion: when asked what it has to say about the function

W [s ,N ,m , ε ] :=(
1√
2πε

)N(
2
ε

)mCos[mπ]
Gamma[N2 + m]

Gamma[N2 ]
Hypergeometric1F1[N2 + m, N2 ,− s

ε ]

in the cases m = −1 and m = −2, Mathematica responds34

w̃−4(s;N ; ε) = − 1
2

(
1√
2πs

)N{
Γ

(
N−2

2

)
− Γ

(
N−2

2 , t
)}

s

w̃−6(s;N ; ε) = 1
2

(
1√
2πs

)N{
Γ

(
N−2

2

)
− Γ

(
N−2

2 , t
)}

(s− N−4
2 ε)

+ ε2
(

1√
2πε

)N
e−t

= precisely the “complicated expression” encountered above

34 I allow myself here to bring this simplification

BN = CN = 1

to the results actually reported by Mathematica.
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Evidently the statements which led to (84.2) can now be notated

∇2W−6 = W−4

∇4W−6 = ∇2W−4 = W−2

∇6W−6 = ∇4W−4 = ∇2W−2 = W0


 (86)

and if we omit all references to W−6 we recover the statements which led to
(84.1).

It becomes at this point natural to conjecture that

∇2W2m = W2m+2 even if m is not an integer (87)

To establish such a result it proves efficient to elaborate upon a remark make just
prior to (79): the function M(N2 +m; N

2 ;−t) satisfies this instance of Kummer’s
equation {

t d
2

dt2 +
(
N
2 + t

)
d
dt + N

2 + m
}
M(t) = 0

The implication, by (72.2), is that{
2
[
s d
ds + N

2

]
d
ds + 2

ε

[
s d
ds +

(
N
2 + m

)]}
w̃2m(s; ε;N) = 0

The operator 2
[
s d
ds + N

2

]
d
ds was found at (64.2) to refer to the action of ∇2,

and can in the present context be replaced now by this operator of lower order:
− 2

ε

[
s d
ds +

(
N
2 + m

)]
. Quick calculation gives

− 2
ε

[
s d
ds +

(
N
2 + m

)]
w̃2m(s; ε;N)

=
(

1√
2πε

)N(
2
ε

)m+1 cos(m + 1)π
Γ ( N

2 +m+1)

Γ ( N
2 )

· (88)

·
{
M(N2 + m; N

2 ;−t)− 2
N tM(N2 + m + 1; N

2 + 1;−t)
}

By Kummer transformation{
etc.

}
= e−t

{
M(−m; N

2 ; t)− 2
N tM(−m; N

2 + 1; t)
}

which by appeal to one of the several recurrence properties of the Kummer
functions35 becomes

= e−tM(−m− 1; N
2 ; t)

= M(N2 + m + 1; N
2 ;−t)

So we have
2
[
s d
ds + N

2

]
d
ds w̃2m(s; ε;N) = w̃2(m+1)(s; ε;N)

35 Use (Abramowitz & Stegun, 13.4.4)

M(a− 1; b; z) = M(a; b; z)− 1
b tM(a; b + 1; z)

with a = −m and b = 1
2N .
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which can be expressed
∇2Wν = Wν+2 (89)

Here Wν refers to the weight function which (in the limit ε ↓ 0) lends meaning
to the operator ∇ν , so symbolically we have

∇2∇ν = ∇2+ν (90)

This is the analog, within the present multivariate formalism, of the statement

D1Dν = D1+ν

which within the ordinary fractional calculus is used to erect upon the theory
of fractional integration a theory of fractional differentiation: thus

D
1
2 = D ·D− 1

2

Within our representational approach to the factional calculus we can assign
also direct meaning to D

1
2 , and so it is within the present formalism: (89) is

not a definition, but a statement relating individually meaningful expressions.
Equation (90) entails

∇2m∇ν = ∇2m+ν : m = 0, 1, 2, . . . (91)

which in the case ν = −2m becomes a theory of Green’s functions. More
generally we expect to have (but have as yet not quite established) a “law of
exponents”

∇µ∇ν = ∇µ+ν : conditional (92)

where “conditonal” means that (92) is not to be asserted in cases where µ or nu
or their sum is “exceptional,” in the sense soon to be explained. Thus will we
be proscribed from writing (for example) ∇2∇−1 = ∇ =

√
∇2; my theory (in

its present form) therefore does not create the possibility of an alternative to
Dirac’s famous trickery. But it does, by lending meaning to (92), clear the way
toward development of a fractional harmonic analysis on spaces of fractional
dimension, which seems to me to be a fairly wonderous accomplishment.

6. Exceptional cases: a portfolio of figures. We are in position now (see again
(63) and (72)) to write

∇νf(xxx) = lim
ε↓0

∫ ∞

0

〈f(xxx; r)〉NWν(r; ε;N) · SNr
N−1 dr

SN = 2π
N
2 /Γ (N2 )

Wν =
(

1√
2πε

)N(
2
ε

)ν
2 cos

(
ν π

2

)Γ ( N+ν
2 )

Γ ( N
2 )

M
(
N+ν

2 ; N
2 ;− 1

2εr
2
)

and possess a good intuitive understanding of what 〈f(xxx; r)〉N means. My
objective here will be to make the meaning of Wν equally plain. Formulæ
such as (76)—which involve only (complicated combinations of) elementary
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functions—become available in special cases,36 but even they don’t speak
sharply to intuition. To explore smooth trends in typical regions of parameter
space the graphical technique seems optimal.

It has been remarked (p. 51) that “the Laplacian theory implicit in (72),
when pulled back to one dimension, reproduces only a fraction of the full
factional calculus supported by (42);” Figures 1–10 are therefore not directly
relevant to the theory here at issue, though they illustrate points of persistent
qualitative significance. Figures 11-13 do arise from our theory of generalized
Laplacians, but are special to the cases{

N, ν
}

=
{
2, 2

}
,
{
2, 4

}
,
{
2, 6

}
and therefore convey little sense of the smoothly interpolative aspects of that
theory. The same can be said of Figures 14-16, where N and ν range on an
expanded set of positive integers. None of those figures pertain to cases of the
type ν < 0 (i.e., to those parts of our formalism which support an associated
theory of generalized Green’s functions), nor do any cast light on the location
and nature of the “exceptional cases.” Our work is therefore cut out for us.

I will find it useful to write

weight function = (trigamma factor) · (Kummer factor)

with

trigamma factor J(N, ν) ≡ cos
(
ν π

2

)Γ ( N+ν
2 )

Γ ( N
2 )

Kummer factor K(r, ε;N, ν) ≡
(

1√
2πε

)N(
2
ε

)ν
2 M

(
N+ν

2 ; N
2 ;− 1

2εr
2
)

and to distinguish effects due to the one from effects due to the other. Looking
first to the former (which is the source of the “exceptional case” phenomenon),
we have

J(N, ν) =

{∞ on the lines N + ν = 0,−2,−4, . . .
0 on the lines ν = . . . ,−5,−3,−1,+1,+3,+5, . . .
# where the above lines intersect

where # refers to certain finite numbers (essentially residues of the gamma
function), as explained below. Figure 17 maps the primary structural features
of J(N, ν).

36 I invite my reader to engage in a little experimentation at this point. Insert
various values of N and ν into the function defined

W [r ,N , ν , ε ] :=(
1√
2πε

)N(
2
ε

) ν
2 Cos[ν π

2 ]
Gamma[N+ν

2 ]
Gamma[N2 ]

Hypergeometric1F1[N+ν
2 , N2 ,− 1

2εr
2]

and discover what Mathematica has to say. Typically ν (though not N) will
have to be an integer, else Mathematica will simply return the definition.
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Figure 17: The factor J(N, ν) is positive at white points, negative
at shaded points. It becomes infinite on the slant sides, is zero on
the flat tops/bottoms, but assumes finite values on the corners of the
parallelograms. • marks the location of the familiar 3-dimensional
∇2, and ◦ the location of the associated Green’s function ∇−2.
Heavy lines at N = 3 and N = 2.9 mark locations of the sections
shown in Figure 18.
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Figure 18: Graphs of J(2.9, ν) (above) and J(3, ν). In the former
figure, the zeros at ν = ±1,±3,±5, . . . are those of cos ν π

2 , while
the singularities arise from the simple poles of the gamma function.
Their relative placement is that implied by the N = 2.9 section-line
inscribed on Figure 17. In the lower figure, zeros and singularities
have come into confluence (the N = 3 section-line passes through
corners of the parallelograms) and “cancelled each other out,” for
reasons discussed in connection with Figure 19.
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Figure 19: The gamma function Γ (x) has (see p. 1 of Magnus &
Oberhettinger) simple poles at x = 0,−1,−2, . . ., and its residue at
−n is (−)n 1

n! . The singular points of Γ (x) coincide with zeros of
the function sinxπ, which can be expanded

sinxπ = (−)nπ(x + n) + · · ·

So sinxπ · Γ (x) is regular (lower figure): it assumes the value π/n!
at x = −n and vanishes at x = +n : n = 0, 1, 2, . . .

It is clear from Figure 17 that the “order advancement sequence”

J(3, 2)→ J(3, 2 + 2)→ J(3, 2 + 4)→ J(3, 2 + 6)→ · · ·

exhibits sign alternation, but that the “order reduction sequence”

· · · ← J(3, 2− 6)← J(3, 2− 4)← J(3, 2− 2)← J(3, 2)

—for entries subsequent to J(3, 2− 4)—does not; every entry is positive. From
the figure it becomes evident that interesting variants of this remark arise, in
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Figure 20: The central value K(0, ε;N, ν) of the Kummer factor
K(r, ε;N, ν)—shown here on the domain 0 < N < 5; −10 < ν < 20
with ε set to unity—appears to be everywhere positive.

fact, from every “seed” J(N, ν). The “sign alternation phenomenon,” first
mentioned in the Introduction and encountered several times subsequently,37

refers (in the language of our representation formalism) to the order-dependence
of the sign of Wν(0;N ; ε); i.e., to the sign reversals which associate with the
process

Wν(0;N ; ε)→Wν+2(0;N ; ε)

The sign structure of J would be inherited by W = JK if the sign of K(0, •; •, ν)
were ν-independent. Which, on the evidence of the above figure, it is. We infer
that the principle of sign alternation is compromised when one steps so far into
“Green’s domain” as to render ν < −N .

Spanier & Oldham’s Figure 47–2 bears a superficial resemblance to my own
Figure 17, though it refers to a property not of J but of M(a; b; z). It asserts,
in effect, that the the Kummer factor K(r, ε; N+ν

2 , N2 ), thought of as a function
of r ≥ 0, exhibits (for all N > 0)

no zero crossing if ν < 0
1 zero crossing if 0 < ν < 2 (94)
2 zero crossings if 2 < ν < 4

...

37 It becomes most vividly evident when one compares Figures 11, 12 & 13.
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Using instructions on the pattern

Plot[W[r,N,ν, 3
4]/Abs[W[0,N,ν,

3
4]],{r,0,5},PlotRange->{-1,+0.2}]

to study sign structure, and

Plot[W[r,N,ν, 3
4]/Abs[W[0,N,ν,

3
4]],{r,0,5},PlotRange->{-0.01,+0.01}]

to count zero crossings, I have ranged widely on the {N, ν}-plane, and found
exact conformity with the assertions made in Figure 17 and at (94). I supply
below a single example of the product of such exploration:

1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0.2

1 2 3 4 5

-0.01

-0.0075

-0.005

-0.0025

0.0025

0.005

0.0075

0.01

Figure 21: Illustrative figures in which I have set N = 2.9 and
ν = 5.9. Exploiting the continuity of Wν(r;N ; ε) in N and ν, I have
learned to assign fractional values to those parameters in order to
avoid the nulls and infinities which can occur when either assumes
an integral value.



Unsettled status of the multivariate law of exponents 65

7. The composition problem for generalized Laplacians. In the ordinary calculus
of a single variable, differentiation operators D ≡ d

dx

compose by the law of exponents

DmDn = Dm+n : m and n ∈ {0, 1, 2, . . .}
and so do the integral operators defined D−1f(x) ≡

∫ x

a
f(y) dy:

D−mD−n = D−m−n

Mixed composition is a bit more complicated, since one has (see again the
bottom of p. 12)

DD−1f(x) = f(x) but D−1Df(x) = f(x)− f(a)

An unrestricted law of exponents pertains only to functions with the special
property that f(a) = 0.

In a representation-theoretic approach to the fractional calculus of a single
variable (such as that developed in §2) one has

Dνf(x) = lim
ε↓0

∫
f(y)Wν(x− y; ε) dy (95)

which—as was remarked already in the discussion subsequent to (25)—affords
two distinct approaches to establishment of a law of exponents: one might
undertake to show that(

d
dx

)m
Dνf(x) = lim

ε↓0

∫
f(y)

(
d
dx

)m
Wν(x− y; ε) dy(

d
dx

)m
Wν(x− y; ε) = Wm+ν(x− y; ε)

but alternatively one might undertake to show that∫
Wµ(x− z; ε)Wν(z − y; ε) dz = Wµ+ν(x− y; ε)

The latter procedure is latently more general, because one is released from the
requirement that µ be a (positive or negative) integer. In the derivation of (91)
we used the multivariate analog of the former procedure. My objective here
will be to explore the potentialities of the latter.

The ordinary fractional calculus springs from a procedure (95) which might
be diagramed

f(x) −−−−−−−→
convolve

fν(x; ε) −−−−−−−→
ε↓0

Dνf(x)

The fractional Laplacian springs, on the other hand, from a procedure (93)
which involves a preparatory step

f(xxx) −−−−−−−→
average

〈f(xxx; r)〉 −−−−−−−→
convolve

fν(xxx; ε) −−−−−−−→
ε↓0

∇νf(xxx)

and is therefore relatively more complicated, even in the one-dimensional case.
I look now, by way of orientation, to details of the associated composition
problem in the case N = 2.



66 The fractional Laplacian

We have38

∇νf(x, y) = 1
2π

∫ ∞

0

∫ 2π

0

f(x + r cos θ, y + r sin θ)Wν(r; ε) dθdr

giving

∇µ∇νf(x, y) =
(

1
2π

)2
∫ ∞

0

∫ 2π

0

{ ∫ ∞

0

∫ 2π

0

f(x + r1 cos θ1 + r2 cos θ2, y + r1 sin θ1 + r2 sin θ2)

·Wν(r1; ε1) dθ1dr1

}
Wµ(r2; ε2) dθ2dr2

In view of our intended destination it becomes natural to write

r cos θ = r1 cos θ1 + r2 cos θ2

r sin θ = r1 sin θ1 + r2 sin θ2

Then
r2 =

√
r2 + r2

1 − 2rr2 cos(θ − θ1)

θ2 = arctan
[r sin θ − r1 sin θ1

r cos θ − r1 cos θ1

]
and with Mathematica’s assistance we find the Jacobian of the transformation{
r1, θ1, r2, θ2

}
→

{
r1, θ1, r, θ

}
to be given by

∣∣∣∂(r1, θ1, r2, θ2)
∂(r1, θ1, r , θ )

∣∣∣ =
r√

r2 + r2
1 − 2rr1 cos(θ − θ1)

So we have

∇2m·∇2nf(x, y)= 1
2π

∫ ∞

0

∫ 2π

0

f(x + r cos θ, y + r sin θ)

·
{

r
2π

∫ ∞

0

∫ 2π

0

W2n(s;ε1)W2m(
√

r2+s2−2rs cosϕ;ε2)√
r2+s2−2rs cosϕ

dϕds

}
dθdr

where I have found it convenient to adopt the notational simplifications r2 �→ s
and θ − θ2 �→ ϕ. Reading from (93), we have39

W2m(s; ε; 2) = 1
2πε

(
2
ε

)m cos(mπ)Γ (1 + m) ·M(1 + m; 1;− 1
2εs

2)

= ditto · e− 1
2ε s

2
M(−m; 1; 1

2εs
2)

38 Here and henceforth limε↓0 will be understood but not notated, and when
no confusion can result I will write Wν(r) for Wν(r; ε), Wν(r; ε) for Wν(r; ε;N).

39 It is only because W2m is easier to write out than Wµ that I speak now
of ∇2m∇2n rather than of ∇µ∇ν ; the notation carries no presumption that 2m
and 2n are integers.
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and would like to show that
{
etc.

}
= W2m+2n(r; ε). But in no case—by any

trickery I have in a full day of effort been able to devise—have I been able to
do so; the integrals appear to be intractable. In cases N > 2 one would have to
construct a relatively intricate geometrical argument before arriving at integrals
that can be expected to be no less intractable, but I see no point in pursuing
that train of thought.

The purported “law of exponents” (92) remains, therefore, at this point
unproven, and the following circumstance

cosmπ cosnπ = 1
2 cos(m + n)π + 1

2 cos(m− n)π︸ ︷︷ ︸
unwelcome term

leads me to suspect it may not even be correct. The point at issue, so long as
it remains unsettled, will remain a blemish on the face of my formalism, but a
blemish of (so far as I can see) no practical consequence.

8. Alternatives to the Gaussian representation. All of our results (and, more
recently, non-results) are—so far as concerns their function-theoretic details,
and except (presumably) in the limit ε ↓ 0 —artifacts of our having elected (at
(59), in imitation of (6)) to work in Gaussian representation. Infinitely many
alternatives to the Gaussian representation could, in principle, be devised, and
of those a handful are of occasional practical importance. One might plausibly
suppose that our theory could equally well be supported by any of those
alternative representations. But so far as I am presently aware, the Gaussian
represention is in fact the only representation which serves all of our formal
needs, and leads to a theory which can be carried through to completion. My
purpose here will be to survey some of the more familiar alternatives, pursuing
each to the point where the reasons for its failure become evident. From the
resulting “catalog of failures” we stand to gain a sharpened sense of the qualities
from which the Gaussian representation acquires its exceptional power.

Each of the δ-representations discussed below will be introduced in its
one-dimensional formulation—generically

δ(x) = lim
ε↓0

W (x; ε)

—from which its rotationally-invariant N -dimensional generalization will be
constructed

δ(xxx) = lim
ε↓0

Z−1W (r; ε)

Z = Z(ε;N) ≡
∫ ∞

0

W (r; ε) · SNr
N−1 dr

Here r =
√
xxx···xxx and SN retains its familiar geometrical meaning.40

40 See again p. 32.
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As a first example, let us, in place of (6), write41

δ(y − x) = lim
ε↓0

1
2ε sech2

(
y−x
ε

)
(96)

= d
dy θ(y − x) with θ(y − x) = lim

ε↓0
1
2

[
1 + tanh

(
y−x
ε

)]
and notice that if F (z) ≡ sech2z = 1− tanh2z is notated

F (z) = −(T 2 − 1) : here T ≡ tanh(z)

then
(
d
dz

)1
F (z) = +2(T 3 − T )(

d
dz

)2
F (z) = −2(3T 4 − 4T 2 + 1)(

d
dz

)3
F (z) = +8(3T 5 − 5T 3 + 2T )(

d
dz

)4
F (z) = −8(15T 6 − 30T 4 + 17T 2 − 2)(

d
dz

)5
F (z) = +16(45T 7 − 105T 5 + 77T 3 − 17T )(

d
dz

)6
F (z) = −16(315T 8 − 840T 6 + 756T 4 − 284T 2 + 17)

...

These results could, in principle, be used to lend representation-theoretic
meaning to the ordinary differential operators D± integer, but do not appear to
support a workable fractional calculus, for this reason: I am unable to discover
a population of well-studied higher functions Fν(z) with the property that

F0 (z) = sech2z

Fn(z) = nth entry in preceding list: n = 1, 2, 3, . . .

which would permit me to assign non-integral value to the index n, therefore
unable to play again the interpolative game we played at (11). Looking to the
higher-dimensional generalization of (96), we encounter a heightened version
of the same problem; the normalization factors Z(ε;N) are given by awkward
expressions

Z(ε; 2) = 1
2ε

1S2 log 2

Z(ε; 3) = − ε2S3

[
PolyLog[2,-I]+PolyLog[2,+I]

]
= π2

24 ε
2S3

Z(ε; 4) = −3ε3S4

[
PolyLog[3,-I]+PolyLog[3,+I]

]
...

41 The following equations have been designed to emphasize that it is, for
many purposes, a matter of indifference whether one imagines oneself to be
working from a representation of δ(z) or of θ(z). The sech2 distribution is, in
relation to the Gaussian distribution, examined in fair detail in §10 of “Gaussian
wavepackets” ().
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(Mathematica defines PolyLog[n,z]≡
∑∞

k=1
zk

kn , which makes it a close relative
of the zeta function), and when we look to the evaluation42 of

{
etc.

}
in

∇2mδ(xxx) = lim
ε↓0

1
Z(ε;N)

{[(
d
dr

)2 + N−1
r

d
dr

]m
W (r; ε)

}
(97)

W (r; ε) = 1
2ε sech2

(
r
ε

)
we are led to expressions whose m-dependence is much too complicated to
permit the interpolation and backward extrapolation which lie at the formal
heart of my fractional Laplacian concept. The representation fails, therefore,
for reasons of “analytical recalcitrance.” But the complicated functions to
which it leads are found, when plotted, to resemble closely their Gaussian
counterparts; it there were a plauible way to “morph figures” which did not
rely upon analytical interpolation/extrapolation then the representation might
be salvaged.

Look to the representation

δ(z) = lim
ε↓0

sin(z/ε)
πz (98)

and notice that in this case θ(z) = limε↓0
∫ z

−∞
1
πu sin(u/ε) du does not admit

of description in terms of simple functions. The representation stands in close
proximity to a family of well-studied functions

sin z
z = j0(z) ≡

√
1
2π/zJ 1

2
(z)

and the functions in question (the “spherical Bessel functions,” see Abramowitz
& Stegun, 10.1) possess some lovely derivative properties—for example, one has(

1
z

d
dz

)m[z−njn(z)] = (−)nz−(m+n)jm+n(z)

—but none of that appears to help much, for

(
d
dz

)0 sin z
z = 1− z2

6 + z4

120 − z6

5040 + z8

362880 − · · ·(
d
dz

)1 sin z
z = + z cos z−sin z

z2

= − z
3 + z3

30 − z5

840 − z7

45360 + · · ·(
d
dz

)2 sin z
z = − 2z cos z+(z2−2) sin z

z3

= − 1
3 + z2

10 − z4

168 + z6

6480 + · · ·(
d
dz

)3 sin z
z = +−z(z2−6) cos z+3(z2−2) sin z

z4

= z
5 − z3

42 + z5

1080 − · · ·
...

42 I appeal here to a computationally more useful variant of (64.1).
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are still too complicated to lend any plausible meaning to
(
d
dz

)ν sin z
z . When we

turn to the higher-dimensional generalization of (98) things get worse, for we
are led to normalization integrals

Z ∼
∫ ∞

0

sin r
r rN−1 dr which are undefined for N �= 1

Look finally to the “forward-looking exponential” representation

δ(y − x) = lim
ε↓0

{
0 : y < x
1
ε exp

{
−y−x

ε

}
: x < y (99)

= d
dy θ(y − x) with θ(y − x) = lim

ε↓0

{
0 : y < x

1− exp
{
− y−x

ε

}
: x < y

Writing

E
⇀

(z) ≡
{ 0 : z > 0
e−z : 0 < z

= θ(z) · e−z

we have (
d
dz

)n
E
⇀

(z) = e−z ·
n∑

k=0

(−)k
(
n
k

)
θ(n−k)(z)

The θ(z) factor reflects the fact that E
⇀

(z) is discontinuous at the origin. The
occurance of θ(z) together with its derivatives δ(z), δ′(z), δ′′(z), . . . in a theory
intended to accomplish (among other things) the representation of such objects
is, of course, intolerable.43 Normalization of the associated N -dimensional
theory is made particularly easy by the circumstance that∫ ∞

0

e−rrN−1 dr = Γ (N)

but when—drawing inspiration from (97)—one looks to expressions of the form[(
d
dr

)2 + N−1
r

d
dr

]m
e−r

one is led to results which, while interesting in their way (see the Appendix),
lead to absurdities, for they fail at the origin, where the tentlike function e−r

becomes undifferentiable. Attempts to “manage” the implications of that fact
(I don’t know precisely how that would be accomplished) would open the theory
to the same criticism as we just encountered in the case N = 1.

43 A variant of the same problem arises from the tentlike “Janus exponential”

e−|r| = θ(−z)ez + θ(z)e−z

which, though continuous, has a discontinuous first derivative at the origin.
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I conclude on evidence of the preceding examples that the Gaussian
representation owes its success to these circumstances:
• it is everywhere continuous, and so are its derivatives of all orders;
• its higher-dimensional analog is normalizable for every N ;
• it does not lead into realms unknown to the established theory of higher

functions.
It is the last of those circumstances which would have to be rendered more
precise if one were to contemplate the possibility of a provable “Gaussian
uniqueness theorem.” It would be nice, in fact, to possess an alternative to
the Gaussian representation, so that one could test experimentally whether “all
representation-based formulations of the fractional calculus become identical in
the limit ε ↓ 0.” I have been led by this thought to consider the

“super-Gaussian representation” δ(x) = lim
ε↓0

1

εΓ ( 5
4 )

e−(x/2ε)4

which is manifestly C∞, and normalizable in all dimensions because∫ ∞

0

e−r4
rn−1 = 1

4Γ (n4 )

But it fails to meet the third of the above criteria.

Standing somewhat apart from “representations of the δ-function” of the
sort discussed in preceding pages are the representations

δ(xxx− yyy) =
∑

ϕn(xxx)ϕn(yyy)

supplied by the theory of self-adjoint operators (Sturm-Liouville theory), to
which (in particular) quantum mechanics assigns fundamental importance.
Such representations will presumably play a basic role in the “fractional
multivariate calculus in the presence of boundaries” which I hope to explore
on another occasion.

9. Fractional calculus by “interpolation in function space”. Construe f(x) and
its successive ordinary integrals/derivatives

· · · , D−2f(x), D−1f(x), f(x), D1f(x), D2f(x), · · ·

to represent an ennumerated sequence of “points in the function space” F. The
fractional calculus serves in effect to thread a ν-parameterized “interpolating
curve” Dνf(x) through those points. It does its work, however, without appeal
to any “best fit” criterion, and makes no claim in that regard. Distinct variants
of the fractional calculus give rise to (alternatively: arise from) distinct
interpolating curves in F.

It is with that imagery in mind that I undertake now to try to render more
concretely explicit some of the central accomplishments of preceding pages,
accomplishments which I fear have been obscured by the blizzard of exploratory
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detail. I draw exclusively upon the Gaussian representation, and work initially
in one dimension.

By Taylor’s theorem44

f(x + r) =
∞∑
n=0

1
n!Fn r

n (100)

Fn ≡ Dnf(x)

which we may usefully interpret to be the generating function for the data
Fn. Standardly, one recovers data from such an “exponential”20 generating
function by performing operations of the design limr↓0( d

dr )n, but I have reason
now to advocate an alternative procedure, which I illustrate by examples before
discussing the generalities of the method: write

G0(r; ε) ≡ 1√
2πε

e−
1
2ε r

2
(101)

and use ∫ +∞

−∞
rnG0(r; ε) dr =

{
(2ε)

1
2n 1√

π
Γ (n+1

2 ) : n even
0 : n odd

to obtain∫ {∑
1
n!Fn r

n
}
G0(r; ε) dr = F0 + 0 + 1

2!εF2 + 0 + 1
4!3ε

2F4 + · · ·
↓
= F0 in the limit ε ↓ 0

Introduce
G1(r; ε) ≡ − d

drG0(r; ε) = 1
ε r G0(r; ε)

and use∫ +∞

−∞
rnG1(r; ε) dr =

{
0 : n even
2

1
2 (n+1)ε

1
2 (n−1) 1√

π
Γ (n+2

2 ) : n odd

to obtain∫ {∑
1
n!Fn r

n
}
G1(r; ε) dr = 0 + F1 + 0 + 1

3!3εF3 + 0 + 1
5!15ε2F5 + · · ·

↓
= F1

Proceeding similarly to the next higher order, introduce

G2(r; ε) ≡ − d
drG1(r; ε) =

(
− d

dr

)2
G0(r; ε) = r2−ε

ε2 G0(r; ε)

44 I proceed formally, therefore do not stipulate that x be a regular point of
a nice function, and that r lie within the circle of convergence.
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and use45

∫ +∞

−∞
rnG2(r; ε) dr =




0 : n = 0
0 : n = 1
2 : n = 2
0 : n = 3
12ε : n = 4
0 : n = 5
90ε2 : n = 6

...

to obtain∫ {∑
1
n!Fn r

n
}
G2(r; ε) dr = 0 + 0 + 1

2!2εF2 + 0 + 1
4!12εF4 + 0 + · · ·

↓
= F2

To describe the situation in general—i.e., to describe∫ {∑
1
n!Fn r

n
}
Gm(r; ε) dr with Gm(r; ε) ≡ 1√

2πε

(
− d

dr

)m
e−

1
2ε r

2

—we observe that great simplification can be achieved by slight notational
adjustment: writing r =

√
εz, we find ourselves looking at∫ {∑

1
n!Fn z

n
}
ε

1
2 (n−m)Gm(z) dz with Gm(z) ≡ 1√

2π

(
− d

dz

)m
e−

1
2 z

2

= 1√
2π

e−
1
2 z

2
Hem(z)

By reorganization of some elementary data presented on p. 3 we have

z0 = He0(z)

z1 = He1(z)

z2 = He2(z) + He0(z)

z3 = He3(z) + 3He1(z)

z4 = He4(z) + 6He2(z) + 3He0(z)

z5 = He5(z) + 10He3(z) + 15He1(z)

z6 = He6(z) + 30He4(z) + 135He2(z) + 105He0(z)
...

z2p = He2p (z) + terms of lower even order

z2p+1 = He2p+1(z) + terms of lower odd order




(102)

45 Notice the onset of an introductory string of consecutive zeros.
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The Hermite polynomials are orthogonal in the Gaussian-weighted sense∫ +∞

−∞
Hem(z)Hen(z) e−

1
2 z

2
dz =

{
n!
√

2π : m = n
0 : m �= n

(103)

and they are complete.46 So one has the Hermite representation formulæ

J(x) =
∞∑
n=0

Jn ·Hen(x) (104)

Jn = 1
n!

√
2π

∫ +∞

−∞
J(y)Hen(y) e−

1
2y

2
dy

One could use this information to reproduce and extend the list of Hermite
expansions (102) but I won’t, since we have no pressing need of such data. We
are in position now to write∫ {∑

Fn r
n
}
Gm(r; ε) dr =

∞∑
n=0

Fn I(n,m)ε
1
2 (n−m) (105)

I(n,m) ≡ 1
n!

√
2π

∫ +∞

−∞
znHem(z)e−

1
2 z

2
dz

The integral I(n,m) senses only the Hem-term which may or may not be present
in the Hermite expansion of zn. No such term is present if n < m (this accounts
for the “introductory string of consecutive zeros” noticed earlier), nor is any
present if n −m is odd (i.e., if n and m are of opposite parity; this accounts
for the alternating zeros evident in the examples). If n > m and n−m is even,
then I(n,m) assumes a non-zero value, but that value is (owing to presence in
(105) of the factor ε

1
2 (n−m)) rendered irrelevant in the limit ε ↓ 0. And if n = m

then we have zn = Hem(z) +
{
weighted sum of terms orthogonal to Hem(z)

}
,

giving47 I(m,m) = 1. We are brought thus to the conclusion that

lim
ε↓0

∫ +∞

−∞

{ ∞∑
n=0

1
n!Fn r

n
}
Gm(r; ε) dr =

∑
Fnδnm = Fm (106)

The pattern of the preceding argument is, however, susceptible to this
serious criticism: Taylor expansion, as invoked at (100), is available only within
a circle of convergence, which my integrals

∫ +∞
−∞ presume to be infinite. The

latter presumption will often be in conflict with the facts of the matter, and
in such cases the method can be expected to fail. The example f(x) = eix

leads naturally to a variant of the argument which seems to me to be of some
independent interest. As a preliminary step, we play again the game first played
at (11): we notice that the Weber functions

Dµ(z) �→ Hem(z)e−
1
4 z

2

46 For the proof, see quantum mechanics (), Chapter 2, pp. 64–65.
47 It is interesting that exactly the right normalization factor has been left

behind by constructions/computations prior to this point.
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when µ �→ m = 0, 1, 2, . . . We inform Mathematica of our interest in

Dµ(z) ≡ Weber[µ ,z ]

:= 2µ/2Exp[-z2/4]
( Gamma[1/2]

Gamma[(1-µ)/2]
Hypergeometric1F1[-µ/2,1/2,z2/2]

+
z√
2

Gamma[-1/2]

Gamma[-µ/2]
Hypergeometric1F1[(1-µ)/2,3/2,z2/2]

)
and proceed from (13), writing

Dneix = lim
ε↓0

1√
2π

(
1
ε

)n+1
2

∫ +∞

−∞
eiy e

− 1
4 [ y−x√

ε
]2
Dn

(
y−x√

ε

)
dy

= eix · lim
ε↓0

1√
2π

(
1
ε

)n+1
2

{ ∫ +∞

−∞
eiu e

− 1
4 [ u√

ε
]2
Dn

(
u√
ε

)
du

}

Mathematica finds the integrals difficult,48 but at length supplies

= eix · lim
ε↓0




e−
1
2 ε · e0iπ

2 : case n = 0
e−

1
2 ε · e1iπ

2 : case n = 1
e−

1
2 ε · e2iπ

2 : case n = 2
e−

1
2 ε · e3iπ

2 : case n = 3
e−

1
2 ε · e4iπ

2 : case n = 4
...

We are led thus to this uncommon formulation of a very familiar fact:

Dneix = ei(x+nπ
2 ) : n = 0, 1, 2, . . . (107)

It becomes natural to speculate49 that the preceding equation may hold even
when n is not an integer, though in §11 of “Construction and physical
application of the fractional calculus” () I use standard methods to obtain
quite a different result. The integral

{
etc.

}
above (after notational adjustment

n �→ ν intended to emphasize that we are now relaxing of the presumption of
integral order) can be written

{
etc.

}
=
√
ε

∫ +∞

−∞

{
cos(
√
εv) + i sin(

√
εv)

}
e−

1
4v

2
Dν(v) du

=
√
ε

∫ ∞

0

cos(
√
εv) e−

1
4v

2[
Dν(v) + Dν(−v)

]
du

+ i
√
ε

∫ ∞

0

sin(
√
εv) e−

1
4v

2[
Dν(v)−Dν(−v)

]
du

48 Things go well enough if one asks for Simplify[
∫ 0

−∞+
∫ +∞
0

].
49 See in this connection §3 of “A child’s garden of fractional derivatives”

(July ), distributed privately by T. J. Osler & M. Kleinz, who can be
contacted at <osler@rowan.edu>.
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Mathematica finds both of the latter integrals intractable when ν is not a
positive integer, but the second of those integrals is tabulated at 7.741.4 in
Gradshteyn & Ryzhik (whose source is 2.14.2 in Erdélyi’s Tables of Integral
Transforms); we are told that

√
ε

∫ ∞

0

sin(
√
εv) e−

1
4v

2[
Dν(v)−Dν(−v)

]
du =

√
2π ε

ν+1
2 e−

1
2 ε sin

(
ν π

2

)
The first of the preceding integrals is not tabulated (though quite a similar
integral—taken from 1.14.4 in Erdélyi—appears at 7.741.5 in Gradshteyn &
Ryzhik), but if it were the case that

√
ε

∫ ∞

0

cos(
√
εv) e−

1
4v

2[
Dν(v) + Dν(−v)

]
du =

√
2π ε

ν+1
2 e−

1
2 ε cos

(
ν π

2

)
then we would have

Dνeix = ei(x+ν π
2 ) · lim

ε↓0
e−

1
2 ε (108.1)

as previously conjectured. Consistency with the “different result [obtained
by standard] methods” would be established by appeal to a point empha-
sized by Osler & Kleinz: “standard methods” place the fiducial point at the
origin, whereas the Gaussian representation places that point at −∞. Slight
adjustment50 of the argument which gave (108.1) gives

Dνeikx = eikx(kei
π
2 )ν · lim

ε↓0
e−

1
2 εk

2
(108.2)

No more straightforward fractional generalization of the statement that(
d
dx

)n becomes “multiply by (ik)n ” in the Fourier transform domain

is imaginable; in the latter domain, by this account, one achieves a fractional
calculus by direct interpolation in the exponent .

In higher-dimensional theory we acquired reason at (52) to have interest in
a construction of which (compare (100)) the one-dimensional analog assumes a
form

〈f(x; r)〉 ≡ 1
2

[
f(x + r) + f(x− r)

]
=

∞∑
n=0

1
(2n)!

F2nr
2n (109)

in which only the even-order derivatives F2n ≡
(
d2

dx2

)n
f(x) are present; odd

derivatives are absent owing to the manifest evenness of 〈f(•; r)〉; the resulting
fractional calculus is “supported” by d2

dx2 rather than by d
dx , and was found to

be empty at the points one might have expected to be occupied by operators of
the form

(
d
dx

)odd. The question now before us is this: Can we, on the pattern

50 Make the replacement
√
ε �→ k

√
ε
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of the preceding argument, sharpen our understanding of the sense in which
that factional theory can be said to be “interpolative”?

In “fractional Laplacian theory” our objective is to give useful meaning
to operators of the general type ∇ 2

3 . Within that context, our interest in d2

dx2

springs in case N = 1 from an interest in the “radial Laplacian” d2

dr2 + N−1
r

d
dr

which we acquired at (64.1). Which is to say, it shifts somewhat when we turn
our gaze from N = 1 to N = 2, 3, . . .

We proceed from an “even-ized” variant∫ {∑
1

(2n)!
F2n z

2n
}
ε(n−m)G2m(z) dz with G2m(z) ≡ 1√

2π

(
− d

dz

)2m
e−

1
2 z

2

= 1√
2π

e−
1
2 z

2
He2m(z)

of our former starting point. Here as before z = r/
√
ε, but in view of the fact

that z2n is always positive it becomes natural to introduce s ≡ 1
2z

2 and to
recall25 that He2m(z) = (−2)mm!L−1/2

m ( z
2

2 ). We then have

2
∫ ∞

0

{∑
1

(2n)!
F2n ·(2s)n

}
ε(n−m)G2m(s) 1√

2s
ds

G2m(s) ≡ 1√
2π

e−sHe2m(
√

2s )

= 1√
2π

(−2)mm! e−sL
− 1

2
m (s)

=
∞∑
n=0

F2n

{
1

(2n)!
√
π
2n+m(−)mm!

∫ ∞

0

sn−
1
2 e−sL

− 1
2

m (s) ds
}
εn−m (110)

where the 2 which appears as a prefactor arises from the circumstance that
when z ranges on [−∞,+∞] the variable s ≡ 1

2z
2 ranges twice on [0,∞].51

Thus are we are led, with the assistance of Mathematica, to write

= F0 + F2
1
2ε + F4

1
2·4ε

2 + F6
1

2·4·6ε
3 + F8

1
2·4·6·8ε

4 + · · · : case m = 0
↓
F0 in the limit ε ↓ 0

= 0 + F2 + F4
1
2ε + F6

1
2·4ε

2 + F8
1

2·4·6ε
3 + · · · : case m = 1

↓
F2 in the limit ε ↓ 0

= 0 + 0 + F4 + F6
1
2ε + F8

1
2·4ε

2 + · · · : case m = 2
↓
F4 in the limit ε ↓ 0

51 Look to this example:∫ +∞

−∞
e−x2

dx = 2
∫ ∞

0

e−y 1
2
√
y dy =

√
π
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To establish the point more generally, one draws (compare (102)) upon

s0 = L
− 1

2 (s)
0

s1 = 1
2 L

− 1
2

0 (s)− L
− 1

2
1 (s)

s2 = 3
4 L

− 1
2

0 (s)− 3 L
− 1

2
1 (s) + 2L− 1

2
2 (s)

s3 = 15
8 L

− 1
2

0 (s)− 45
4 L

− 1
2

1 (s) + 15L− 1
2

2 (s)− 6L− 1
2

3 (s)

s4 = 105
16 L

− 1
2

0 (s)− 105
2 L

− 1
2

1 (s) + 105L− 1
2

2 (s)− 84L− 1
2

3 (s) + 24L− 1
2

4 (s)
...

sn = terms of lower order + (−)nn!L− 1
2

n (s)




(111)

and the circumstance that the associated Laguerre polynomials Lα
m(s) are (see

Abramowitz & Stegun, 22.2) orthogonal in the sense that

∫ ∞

0

Lα
m(s)Lα

n(s) e−ssα ds = δmn
Γ (n+α+1)

n!

which (if completeness can be assumed) entails52

K(s) =
∞∑
n=0

Kn · Lα
n(s)

Kn = n!
Γ (n+α+1)

∫ ∞

0

K(t)Lα
n(t)e−t tα dt

Returning with this information to (110) we obtain

0 + · · ·+ 0 + F2m

{
1

(2m)!
√
π
2m+m(−)mm! · (−)mm!Γ (m + 1

2 )
/
m!

}
︸ ︷︷ ︸ ε0 + O(ε)

1 : m = 0, 1, 2, . . .

which is a straggle-toothed variant of (106), and susceptible to criticism on the
same grounds: we have tacitly assumed the convergence of Taylor’s series to be
unrestricted. It is in an effort to escape the force of that criticism that. . .

We look now to the case f(x) = eikx, which entails53

〈f(x; r)〉 = 1
2

[
f(x + r) + f(x− r)

]
= eikx cos kr (112)

52 The following construction can be (has been) used to reconstruct (111),
which I originally obtained by matrix inversion of the equations that describe
L−1/2
m (s) as linear combinations of powers sn (m,n = 0, 1, 2, . . .).
53 The following function, when expanded in r, actually does converge

unrestrictedly, but we will agree to make no use of that fact.
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Picking up our former train of thought at a very early stage (p. 73), we seek to
recover

∇2meikx = (ik)2meikx (113)

(here I write ∇2 for d2

dx2 to draw attention to the enveloping context of this
work) from

∇2meikx = lim
ε↓0

eikx ·
∫ +∞

−∞
cos kr G2m(r; ε) dr

G2m(r; ε) = 1√
2π

(
1√
ε

)2m+1
e−

1
2ε r

2
He2m( r√

ε
)

= 1√
2π

(
1√
ε

)2m+1(−2)mm! e−
1
2ε r

2
L
− 1

2
m ( 1

2εr
2)

= lim
ε↓0

eikx ·
∫ ∞

0

cos k
√

2εs
{

1√
2π

(
1√
ε

)2m+1(−2)mm! e−sL
− 1

2
m (s)

√
2ε
s

}
ds

But {
etc.

}
= (−)m 1√

2π
2m+ 1

2 ε−mm! · e−ss−
1
2L

− 1
2

m (s) (114)

and Mathematica reports that

∫ ∞

0

cos k
√

2εs
{

etc.
}
ds =




e−
1
2k

2ε : case m=0
−k2e−

1
2k

2ε : case m=1
+k4e−

1
2k

2ε : case m=2
−k6e−

1
2k

2ε : case m=3
...

(115)

This is (in the limit ε ↓ 0) precisely the result we sought—an elementary result,
obtain here with great labor. The point of the labor—i.e., of the round-about
procedure—is that it puts us in position to relax the presumption that m is an
integer. At (114) we make the replacements

(−)m �→ cosmπ and (see again (70)) L
− 1

2
m (s) �→ Γ (m+ 1

2 )

Γ (m+1)Γ ( 1
2 )
M(−m; 1

2 ; s)

For m = 0, 1, 2, . . . the adjustment is merely notational/cosmetic, and one again
recovers (114).



80 The fractional Laplacian

10. Does there exist a fractional exterior calculus? I have remarked already in
connection with (49/50) that the high road to a theory of Laplace-Beltrami
operators active upon (antisymmetric) tensor fields of arbitrary dimension N
and rank n ≤ N is provided by the exterior calculus, and have made reference
to an essay in which details supportive of that remark can be found. The
exterior calculus provides such a theory, but provides also much more; it leads in
particular to vast generalization of Stokes’ theorem. How exciting would be the
prospect if there existed a “fractional exterior calculus.” Alas! I am persuaded
that the answer to the question posed above is “No.” My objective here will be
to sketch the argument that leads me to that conclusion. I admit to a measure of
disappointment, though it is absurd to draw disappointment from a
mathematical fact, and one or two of the ideas which we will encounter along
the way do seem to me to be of some independent interest.

I intend to be sketchy—to work typically in only two or three dimensions,
to omit factors and references to limiting processes when they either do not
contribute directly to the point at issue or can be expected to “take care of
themselves.” When borrowing ideas from representation theory I will appeal
exclusively to Gaussian representation theory. And though several variables
will be in play, I will have need only of (a slight enlargement of) the fractional
calculus of a single variable.

The notion of a “fractional partial derivative” would appear to pose no
difficulty
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APPENDIX. I alluded in §8 to the curious results obtained when one examines
hyperspherically symmetric constructions of the form

∇2me−r =
[(

d
dr

)2 + N−1
r

d
dr

]m
e−r

The results in question were useless for the purposes of that discussion because
they are invalid at the origin,54 but they are in their odd way so pretty that I
could not consign them to the trash can. I look serially to the cases
N = 1, 2, 3, . . . to gain a preliminary sense of the matter. In the case N = 1N = 1N = 1 we
have [(

d
dr

)2 + 0
r
d
dr

]m
e−r = e−r : all m

In the case N = 2N = 2N = 2[(
d
dr

)2 + 1
r
d
dr

]0
e−r = e−r[(

d
dr

)2 + 1
r
d
dr

]1
e−r = e−r · r−1

r[(
d
dr

)2 + 1
r
d
dr

]2
e−r = e−r · r3−2r2−r−1

r3[(
d
dr

)2 + 1
r
d
dr

]3
e−r = e−r · r5−3r4−3r3−6r2−9r−9

r5[(
d
dr

)2 + 1
r
d
dr

]1
e−r = e−r · r7−4r6−6r5−18r4−51r3−126r2−225r−225

r7

In the case N = 3N = 3N = 3[(
d
dr

)2 + 2
r
d
dr

]0
e−r = e−r[(

d
dr

)2 + 2
r
d
dr

]1
e−r = e−r · r−2

r[(
d
dr

)2 + 2
r
d
dr

]2
e−r = e−r · r−4

r[(
d
dr

)2 + 2
r
d
dr

]3
e−r = e−r · r−6

r[(
d
dr

)2 + 2
r
d
dr

]4
e−r = e−r · r−8

r

In the case N = 4N = 4N = 4[(
d
dr

)2 + 3
r
d
dr

]0
e−r = e−r[(

d
dr

)2 + 3
r
d
dr

]1
e−r = e−r · r−3

r[(
d
dr

)2 + 3
r
d
dr

]2
e−r = e−r · r3−6r2+3r+3

r3[(
d
dr

)2 + 3
r
d
dr

]3
e−r = e−r · r5−9r4+9r3+12r2+9r+9

r5[(
d
dr

)2 + 3
r
d
dr

]4
e−r = e−r · r7−12r6+18r5+30r4+45r3+90r2+135r+135

r7

54 A similar remark pertains to statements of the form[(
d
dr

)2 + N−1
r

d
dr

]m 1
rN−2 = 0

but (on evidence of a robust potential theory) certainly does not mean that
they are useless in all contexts
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The case N = 5N = 5N = 5 displays a relative simplicity reminiscent of that encountered
at N = 1 and N = 3 55

[(
d
dr

)2 + 4
r
d
dr

]0
e−r = e−r[(

d
dr

)2 + 4
r
d
dr

]1
e−r = e−r · r−4

r[(
d
dr

)2 + 4
r
d
dr

]2
e−r = e−r · r3−8r2+8r+8

r3[(
d
dr

)2 + 4
r
d
dr

]3
e−r = e−r · r3−12r2+24r+24

r3[(
d
dr

)2 + 4
r
d
dr

]4
e−r = e−r · r3−16r2+48r+48

r3

and encountered again at N = 7N = 7N = 7:

[(
d
dr

)2 + 6
r
d
dr

]0
e−r = e−r[(

d
dr

)2 + 6
r
d
dr

]1
e−r = e−r · r−6

r[(
d
dr

)2 + 6
r
d
dr

]2
e−r = e−r · r3−12r2+24r+24

r3[(
d
dr

)2 + 6
r
d
dr

]3
e−r = e−r · r5−18r4+72r3+24r2−144r−144

r5[(
d
dr

)2 + 6
r
d
dr

]4
e−r = e−r · r5−24r4+144r3−48r2−576r−576

r5

The relative complexity encountered at N = 2 and N = 4 is encountered also
at N = 6N = 6N = 6, and is typical of all even-dimensional cases:

[(
d
dr

)2 + 5
r
d
dr

]0
e−r = e−r[(

d
dr

)2 + 5
r
d
dr

]1
e−r = e−r · r−5

r[(
d
dr

)2 + 5
r
d
dr

]2
e−r = e−r · r3−10r2+15r2+15

r3[(
d
dr

)2 + 5
r
d
dr

]3
e−r = e−u · u5−15u4+45u3+30u2−45u−45

u5[(
d
dr

)2 + 5
r
d
dr

]4
e−r = e−u · u7−20u6+90u5+30u4−195u3−270u2−225u−225

u7

The patterns semi-evident in preceding formulæ are somewhat clarified when
one looks to the general case; one has

[(
d
dr

)2 + N−1
r

d
dr

]m
e−r = e−r · Pm(r;N)

r2m−1

where

Pm(r;N) =
2m−1∑
k=0

Pmk(N) rk

55 Observe that when N = 3 the exponent in the denominator stabilizes at
1 = 3 − 2, when N = 5 it stabilizes at 3 = 5 − 2, when N = 7 it stabilizes at
5 = 7 − 2 (all this owing to the disappearance of low-order coefficients in the
numerator), but when N is even no such stabilization takes place.
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and computation shows that the coefficients Pmk(N) can be described

P10 = − (N − 1)
P11 = +1

P20 = + (N − 1)(N − 3)
P21 = + (N − 1)(N − 3)
P22 = −2(N − 1)
P23 = +1

P30 = −3(N − 1)(N − 3)(N − 5)
P31 = −3(N − 1)(N − 3)(N − 5)
P32 = − (N − 1)(N − 3)(N − 8)
P33 = +3(N − 1)(N − 3)
P34 = −3(N − 1)
P35 = +1

P40 = +15(N − 1)(N − 3)(N − 5)(N − 7)
P41 = +15(N − 1)(N − 3)(N − 5)(N − 7)
P42 = + 6(N − 1)(N − 3)(N − 5)(N − 9)
P43 = + (N − 1)(N − 3)(N − 5)(N − 19)
P44 = − 2(N − 1)(N − 3)(2N − 13)(2N − 13)(2N − 13)

P45 = + 6(N − 1)(N − 3)
P46 = − 4(N − 1)
P47 = + 1
P50 = −105(N − 1)(N − 3)(N − 5)(N − 7)(N − 9)
P51 = −105(N − 1)(N − 3)(N − 5)(N − 7)(N − 9)
P52 = − 15(N − 1)(N − 3)(N − 5)(N − 7)(3N − 32)(3N − 32)(3N − 32)

P53 = − 5(N − 1)(N − 3)(N − 5)(N − 7)(2N − 33)(2N − 33)(2N − 33)

P54 = − (N − 1)(N − 3)(N − 5)(N2 − 46N + 303)(N2 − 46N + 303)(N2 − 46N + 303)

P55 = + 5(N − 1)(N − 3)(N − 5)(N − 13)
P56 = − 10(N − 1)(N − 3)(N − 6)
P57 = + 10(N − 1)(N − 3)
P58 = − 5(N − 1)
P59 = + 1

Here I owe everything to Mathematica, who produced the equations in far less
time than it took me to write them out. I have used heavy type to draw
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attention to the occurrance of certain goofy factorsgoofy factorsgoofy factors. One does not expect
polynomials to factor so nicely “for no reason,” but neither does one expect
such a pattern of nice-factorization to be “occasionally disrupted.”

It is, on preceding evidence, clear how the striking simplifications at N = 1
and N = 3 come about, and why—after a bumpy start (look to the anomalies
which sometimes appear near the bottoms of the “stacks of factors” on the
preceding page)—similar simplifications occur whenever N is odd. One can
easily say various things about the polynomials Pm(u;N),56 but I have been
unable to bring them within the compass of any established theory of named
polynomials.57 I am therefore unable to relax the presumption that m be an
integer, unable to mimic the interpolative and backward extrapolative steps
which are central to the fractional theory developed in the text. Unable, that
is to say, except in the cases N = 1 and N = 3. Looking to the latter. . .

We have[(
d
dr

)2 + 2
r
d
dr

]m
e−r = e−r · r−2m

r : m = 1, 2, 3, . . .

It is in this case by exceptionally elementary calculation that one obtains

[(
d
dr

)2 + 2
r
d
dr

]m
e−r · r−ν

r = e−r · r−(2m+ν)
r : m = 1, 2, 3, . . .

and it becomes natural to write[(
d
dr

)2 + 2
r
d
dr

]µ
2 e−r ≡ e−r · r−µ

r : µ > 0 not necessarily an even integer

by way of “fractional interpolation,” and

[(
d
dr

)2 + 2
r
d
dr

]−µ
2 e−r ≡ e−r · r+µ

r

by way of “backward extrapolation.” The “law of exponents” is, in this case,
a virtual triviality (and in the case N = 1 it is a blatant triviality). But a
lot of good that does us: our formulae lead demonstrably to absurdities unless
implications of the singularity at the origin is correctly managed, and in the
absence of such management it would be foolhardy to invest confidence in any
“theorems” based upon them.

56 It is, for example, almost immediate that

Pm+1 =
[
(4m2 − 2mN + N − 1)− (N − 4m + 1)r + r2

]
Pm

+ r
[
(N − 4m + 1)− 2r

]
P ′
m + r2P ′′

m

which simplifies markedly in the cases N = 1 and N = 3.
57 I find this development surprising, since the polynomials spring from soil

which has been heavily cultivated by many farmers over several centuries, and
has in other connections yielded so many valuable crops.


